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The angular momentum

Enrico Iacopini
@ In the previous lecture we have seen that the

operators L2 and L, commute, which means
that they are compatible observables.
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The angular momentum
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@ In the previous lecture we have seen that the
operators L2 and L, commute, which means
that they are compatible observables.

@ We can, therefore, Look for simultaneous
eigenfunctions of the two operators:

L2°f=XAf and L,f=uf

where A and w are the L2 and L,
eigenvalues, respectively.
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To solve the eigenvalue equations for L2 and L,
Let us start by defining the following two
(non hermitian) operators L4+ = Lz 1 Ly.

We have

[Lz,L:I:] = [Lz,Lm]:I:’L[Lz,Ly] ==
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© Now, since, [L?, L4] = [L?, Lz £ ilLy] = 0,
if fis an eigenfunction of L? for the
eigenvalue A\, also L+ f has the same
property. In fact

L2(L+f) = L+(L?f) = L+ (Nf) = A(L+S)
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© Now, since, [L?, L4] = [L?, Lz £ ilLy] = 0,
if fis an eigenfunction of L? for the
eigenvalue A\, also L+ f has the same
property. In fact

LP(Lxf) = L+(L?f) = L+(Af) = A(L+S)
@ Concerning L, we have instead that

Lz(L:I:f) == (LzL:I: - L:I:Lz)f + L:I:(sz) =
(£ALL)fF+ L f) =
= (WL h)Ltf

which shows that L+ f is an eigenfunction
of L, for the eigenvalue u + f.
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@ We call L4 and L_ raising and lowering
(tadder) operators, respectively.
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The angular momentum

Enrico Iacopini

@ We call L4 and L_ raising and lowering
(tadder) operators, respectively.

@ According to the previous conclusions,
starting from the eigenfunction f,
corresponding to the eigenvalue X\ of L2 and
w of L, with the raising operator f.i. we can
build the functions L4 f, (L4+)?f, ... which are
eigenfunctions of L, for the eigenvalues
w4+ h, w4 2h, ..., remaining eigenfunctions
of L2 for the initial eigenvalue .
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The angular momentum
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©@ We call Ly and L_ raising and Lowering
(tadder) operators, respectively.

@ According to the previous conclusions,
starting from the eigenfunction f,
corresponding to the eigenvalue A\ of L2 and
w of L, with the raising operator f.i. we can
build the functions L4 f, (L4+)?f, ... which are
eigenfunctions of L, for the eigenvalues
w4+ h, w4 2h, ..., remaining eigenfunctions
of L2 for the initial eigenvalue .

© This "raising"” chain will stop somewhere
or not 7
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The angular momentum

© As a matter of fact, since the L, Enrico Iacopini
eigenfunction (L4+)™ f is eigenfunction of L2
for the eigenvalue A, the chain cannot
continue indefinitely because, on any
function (and therefore also on (L4)™ f ...)
we must have

<L?2> > <L2> = A>(u+nh)?

so, to stop the chain, there must be a "top"
L , eigenvector fi for which L f; = 0.
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The angular momentum

© As a matter of fact, since the L, Enrico Tacopini
eigenfunction (L4+)™ f is eigenfunction of L?
for the eigenvalue A, the chain cannot
continue indefinitely because, on any
function (and therefore also on (L+)™ f ...)
we must have

<L2> > <LZ> = A>(u+nh)?

so, to stop the chain, there must be a "top"
L , eigenvector fy for which Ly f; = 0.

@ Let Al: be the highest eigenvalue of L, for
the given eigenvalue X\ of L2. This means
that there exists a function f; 7 0 such that

Lo ft=hls ft; L°ft=Xft; Lyft=0
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The angular momentum
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© But

L3+ L2 Fi(lely — Lyls) =
= L3+ L;Fi(ihL) =L>—L; L+ AL,

= L?’=L4ls+L2FhL,
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Q But
Lils = (Lztily)(Lg FilLy) =
L2+ L2 Fi(laly — Lylg) =
= L3+ L;Fi(thL) =L>—L; Lt AL,
= L?°=Lyls+L2FhL,

@ therefore, using this result on f:, we have

L?ft = (L_Ly+ L34+ hAL)S:
= A= (Al)? + A(hl) = R2(LF + L)
= A=Ah>L(l:+1)
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@ For the same reason for which the raising
chain must stop somewhere, also the
Lowering chain produced by the operators
(L-)™ must do the same, because, again, we
have to satisfy the condition

<L?2> > <L2> = A>(u—nh)
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The angular momentum

Enrico Iacopini

@ For the same reason for which the raising
chain must stop somewhere, also the
Lowering chain produced by the operators
(L-)™ must do the same, because, again, we
have to satisfy the condition

<L?2> > <L2> = A>(u—nh)
@ Let Aly be the Lowest eingenvalue of L, for

the given eigenvalue X of L2. This means
that there exists a function fp 7% 0 such that

Lofo=hlo ft; L°fo=Xfo, L_fo=0
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The angular momentum
o But Enrico Iacopini

(Ll 4+ L2 —RL)S»
A= (Alo)? — A(RLy) = A2(17 — lb)
A= A%y — 1)

L2 fp
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© But

L?fo = (LyLl_+ L5 —AL:)fp
= A= (hlo)?> — A(Aly) = A?(I1Z — L)
= A=Al —1)

@ The two equations that we have found
concerning l¢, lp and A say that

% = e+ 1) = Lo(lo — 1)

which implies that

lb=—lb=1>0 = X=Il({l+1)A?
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As far as the eigenvalues of L, clearly they are
such that
u=mh m=—, —L+1,...L—1,1

so, for a given [, they are in total N =2 + 1,
where N is integer, which implies that

[ (and therefore also m ...) must be integer or
half-integer.
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@ In conclusion, the simultaneous
eigenfunctions of the observables L2 and L,
are characterized by two quantum numbers
l, m such that

L2°f=hR2I(L+1)f; Lf=hmFf

with

m = —{, —t+1, ...l—1,1
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@ In conclusion, the simultaneous
eigenfunctions of the observables L2 and L,
are characterized by two quantum numbers
l, m such that

L2°f=hR2I(L+1)f; Lf=hmFf
with
I = 0, l 1, ...
2

m = —{, —t+1, ...l—1,1

© But, how do they Look like these
eigenfunctions 7?7
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The eigenfunctions
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@ To find the explicit form of the simultaneous
eigenfunctions of L2 and L, we need to write
these operators in spherical coordinates.
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The eigenfunctions

Enrico Iacopini

@ To find the explicit form of the simultaneous
eigenfunctions of L2 and L, we need to write
these operators in spherical coordinates.

@ It can be shown that

o
L, = —ih—
z 1 By
1 0 o 1 82
Lmeae smn o6 +sz'n298cp2
= —h%J
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@ Therefore, the eigenvalue equation for L2
reads

L2f = R2L(L+1) ™
= Jf"=—l(t+1) 1"
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@ Therefore, the eigenvalue equation for L2
reads

L2f = R2L(L+1) ™
= Jf"=—l(t+1) 1"

© But we have already seen this equation !
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The eigenfunctions
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@ Therefore, the eigenvalue equation for L2
reads
L2f = R2L(L+1) ™
= Jf"=—-l(l+1) "

© But we have already seen this equation !

© In fact, this equation was already found when
we have operated the separation of variables
in the 3D time-independent Schrodinger
equation.
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The eigenfunctions
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@ Therefore, the eigenvalue equation for L2
reads

L2f = R2L(L+1) ™
= Jf"=—l(t+1) 1"

© But we have already seen this equation !

© In fact, this equation was already found when
we have operated the separation of variables
in the 3D time-independent Schrodinger
equation.

Q Its solutions are the spherical harmonics
Y™ (6, 9).
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@ Let us recall the definition of the Y, (6, @):

2+ 1( — |m]!
4m (L + |m|)!

Y™ (8, ¢) = eJ P™(cos) e"™®

where [ and m are integers, m is such that

Im| <, e =(—1)" for m > 0 and € = 1 for
m < 0.

Enrico Iacopini QUANTUM MECHANICS Lecture 24 December 3, 2019 14 / 16



The eigenfunctions

Enrico Iacopini

@ Let us recall the definition of the Y, (6, @):

2+ 1( — |m]!

2 ( miy L (cos®) e

Y™ (6, 9) = GJ

where [ and m are integers, m is such that
Im| <, e =(—1)" for m > 0 and € = 1 for

m < 0.
@ Clearly, these functions are also
eigenfunctions of L, = —iﬁ%, in fact

0 m m
—zﬁ,%Yt (6, ) = mh Y(6, p)
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We can, therefore, conclude that, when we have
solved the time-independent Schrddinger
equation in 3D by separation of variables in
radial and polar coordinates, we were indeed
constructing simultaneous eigenfunctions of
the three commuting operators H, L2 and L,

Hy =Evy, L2y =R I+, LY =hmvy
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A final observation before Leaving the subject:

the simultaneous eigenfunctions of L2 and L,
which we have seen to be the spherical
harmonics, admit only values of [ (and m) which
are integers, whereas the algebraic theory
previously developed, allows, in principle, also
half-integers . ..

Which is the meaning af the half-integer
solutions 7
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