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The angular momentum

1 In the previous lecture we have seen that the
operators L2 and Lz commute, which means
that they are compatible observables.

2 We can, therefore, look for simultaneous
eigenfunctions of the two operators:

L2f = – f and Lzf = — f

where – and — are the L2 and Lz
eigenvalues, respectively.
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The angular momentum

To solve the eigenvalue equations for L2 and Lz,
let us start by defining the following two
(non hermitian) operators L˚ ” Lx ˚ i Ly.

We have

[Lz; L˚] = [Lz; Lx]˚ i [Lz; Ly] =
= iℏLy ˚ i(`iℏLx) = iℏLy ˚ ℏLx =
= ˚ℏ(Lx ˚ i Ly) = ˚ℏL˚
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The angular momentum

1 Now, since, [L2; L˚] = [L2; Lx ˚ iLy] = 0,
if f is an eigenfunction of L2 for the
eigenvalue –, also L˚f has the same
property. In fact

L2(L˚f) = L˚(L
2f) = L˚(–f) = –(L˚f)

2 Concerning Lz, we have instead that

Lz(L˚f) = (LzL˚ ` L˚Lz)f + L˚(Lzf) =
= (˚ℏL˚)f + L˚(— f) =
= (—˚ ℏ)L˚f

which shows that L˚f is an eigenfunction
of Lz for the eigenvalue —˚ ℏ.
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The angular momentum

1 We call L+ and L` raising and lowering
(ladder) operators, respectively.

2 According to the previous conclusions,
starting from the eigenfunction f,
corresponding to the eigenvalue – of L2 and
— of Lz, with the raising operator f.i. we can
build the functions L+f; (L+)2f; ::: which are
eigenfunctions of Lz for the eigenvalues
—+ ℏ; —+ 2ℏ; :::, remaining eigenfunctions
of L2 for the initial eigenvalue –.

3 This "raising" chain will stop somewhere
or not ?
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The angular momentum

1 As a matter of fact, since the Lz
eigenfunction (L+)n f is eigenfunction of L2

for the eigenvalue –, the chain cannot
continue indefinitely because, on any
function (and therefore also on (L+)n f ...)
we must have

< L2 > – < L2z > ) – – (—+ nℏ)2

so, to stop the chain, there must be a "top"
Lz eigenvector ft for which L+ft = 0.

2 Let ℏ lt be the highest eigenvalue of Lz for
the given eigenvalue – of L2. This means
that there exists a function ft 6= 0 such that

Lz ft = ℏlt ft; L2ft = – ft; L+ft = 0
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The angular momentum

1 But

L˚Lˇ = (Lx ˚ iLy)(Lx ˇ iLy) =
= L2x + L

2
y ˇ i(LxLy ` LyLx) =

= L2x + L
2
y ˇ i(iℏLz) = L2 ` L2z ˚ ℏLz

) L2 = L˚Lˇ + L
2
z ˇ ℏLz

2 therefore, using this result on ft, we have

L2ft = (L`L+ + L
2
z + ℏLz)ft

) – = (ℏ lt)2 + ℏ(ℏ lt) = ℏ2(l2t + lt)
) – = ℏ2 lt(lt + 1)
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The angular momentum

1 For the same reason for which the raising
chain must stop somewhere, also the
lowering chain produced by the operators
(L`)n must do the same, because, again, we
have to satisfy the condition

< L2 > – < L2z > ) – – (—` nℏ)2

2 Let ℏ lb be the lowest eingenvalue of Lz for
the given eigenvalue – of L2. This means
that there exists a function fb 6= 0 such that

Lzfb = ℏlb ft; L2fb = – fb; L`fb = 0
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The angular momentum

1 But

L2fb = (L+L` + L
2
z ` ℏLz)fb

) – = (ℏ lb)2 ` ℏ(ℏ lb) = ℏ2(l2b ` lb)
) – = ℏ2 lb(lb ` 1)

2 The two equations that we have found
concerning lt, lb and – say that

–

ℏ2
= lt(lt + 1) = lb(lb ` 1)

which implies that

lt = `lb ” l – 0 ) – = l(l+ 1)ℏ2
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The angular momentum

As far as the eigenvalues of Lz, clearly they are
such that

— = mℏ; m = `l; `l+ 1; ::: l` 1; l

so, for a given l, they are in total N = 2l+ 1,
where N is integer, which implies that
l (and therefore also m ...) must be integer or
half-integer.
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The angular momentum

1 In conclusion, the simultaneous
eigenfunctions of the observables L2 and Lz
are characterized by two quantum numbers
l; m such that

L2 f = ℏ2 l(l+ 1)f; Lz f = ℏmf

with

l = 0;
1

2
; 1; :::

m = `l; `l+ 1; ::: l` 1; l

2 But, how do they look like these
eigenfunctions ?
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The eigenfunctions

1 To find the explicit form of the simultaneous
eigenfunctions of L2 and Lz we need to write
these operators in spherical coordinates.

2 It can be shown that

Lz = `iℏ @

@ffi

L2 = `ℏ2
2

4

1

sin„

@

@„

 

sin„
@

@„

!

+
1

sin2„

@2

@ffi2

3

5 =

= `ℏ2 Ĵ
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Enrico Iacopini QUANTUM MECHANICS Lecture 24 December 3, 2019 12 / 16



QUANTUM
MECHANICS
Lecture 24

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The eigenfunctions

1 Therefore, the eigenvalue equation for L2

reads

L2fml = ℏ2 l(l+ 1) fml
) Ĵ fml = `l(l+ 1) f

m
l

2 But we have already seen this equation !

3 In fact, this equation was already found when
we have operated the separation of variables
in the 3D time-independent Schrödinger
equation.

4 Its solutions are the spherical harmonics
Y ml („; ffi).
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The eigenfunctions

1 Let us recall the definition of the Y ml („; ffi):

Y ml („; ffi) ” ›

v

u

u

t

2l+ 1

4ı

(l` jmj)!
(l+ jmj)!

Pml (cos„) e
imffi

where l and m are integers, m is such that
jmj » l, › = (`1)m for m > 0 and › = 1 for
m < 0.

2 Clearly, these functions are also
eigenfunctions of Lz = `iℏ @

@ffi
, in fact

`iℏ @
@ffi
Y ml („; ffi) = mℏ Y ml („; ffi)
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The eigenfunctions

We can, therefore, conclude that, when we have
solved the time-independent Schrödinger
equation in 3D by separation of variables in
radial and polar coordinates, we were indeed
constructing simultaneous eigenfunctions of
the three commuting operators H, L2 and Lz

H = E  ; L2  = ℏ2 l(l+ 1) ; Lz  = ℏm 
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The eigenfunctions

A final observation before leaving the subject:

the simultaneous eigenfunctions of L2 and Lz,
which we have seen to be the spherical
harmonics, admit only values of l (and m) which
are integers, whereas the algebraic theory
previously developed, allows, in principle, also
half-integers . . .

Which is the meaning af the half-integer
solutions ?
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