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Dirac notation

In QM, very often, we have to evaluate scalar
products < ujv > between vectors of the
Hilbert space, representing the physical states.

1 Dirac proposed to chop the bracket notation
for the scalar product into two pieces:

the bra < uj;
the ket jv >

2 Concerning the ket, the Dirac notation
represents only a different way to write the
vectors of H: jv > instead of v.
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Dirac notation

1 But what represents the bra < uj ?
2 To answer, let us see what it does . . .
It associates, in a linear way, a complex
number to any vector of H:

< uj (¸jv > +˛jw >) = ¸ < ujv > +˛ < ujw >

3 It describes, therefore, a linear function
defined from H to the complex field C.

4 The set of these linear functions forms a
vector space.

 

¸ < uj+ ˛ < vj
!

jw >= ¸ < ujw > +˛ < vjw >

and it is called the dual space of H .
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Dirac notation

1 So, the bra < uj is an element of the dual
space of H (space that the mathematicians
have shown to be isomorphic to H itself).

2 According to this notation, for instance, the
scalar product < ujQ̂v > becomes equal to
the bra < uj applied to the vector Q̂v.
In other words, we have

< ujQ̂v >”< ujQ̂jv >

where we have to remember that the
action of a linear operator (such as an
observable) is always intended on the
ket.
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Dirac notation

1 Up to here, it could seem that the Dirac
notation is a kind of maquillage of the
standard notation, maybe more elegant,
but nothing more ...

2 But this is not true !

3 As a matter of fact, with the Dirac notation,
we have introduced the bras < j as
separate entities from the kets j > and
this allow us to define, now, some new
interesting operators.
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Dirac notation

1 Let ju > be a normalized vector and let us
define the following operator

P̂ = ju >< uj
(be careful: this has nothing to do with
< uju > which is a non-negative number !).

2 When we apply the operator P̂ to any vector
jv > of the Hilbert space, we obtain

P̂ jv >” ju >< ujv >=< ujv > ju >
which is the component of the vector jv >
aligned with the vector ju >.

3 The operator P̂ is, in fact, the projection
operator onto the one dimensional subspace
of H, generated by the vector ju >.
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Dirac notation

Let fjen >g be a numerable, orthonormal basis
of H, made, for instance, by the eigenvectors of
some observable Q̂, although this it is not
essential: by hypothesis

< enjem >= ‹nm

It turns out that the operator
X

n

jen >< enj

is a representation of the identity : we call it a
decomposition of the operator I.

Enrico Iacopini QUANTUM MECHANICS Lecture 21 November 20, 2019 7 / 19



QUANTUM
MECHANICS
Lecture 21

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dirac notation

In fact, if ju > is a generic vector, then we
already know that

ju >=
X

n

cn jen > where cn =< enju >

In other words

ju >=
X

n

< enju > jen >”

”
X

n

jen >< enju >

,
X

n

jen >< enj = I
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Dirac notation

1 Similarly, if fje(s) >g is a Dirac
orthonormalized "continuous" basis, such
that

< e(s)je(t) >= ‹(s` t)

then
I =

Z

ds je(s) >< e(s)j

2 The decomposition of the identity is
nothing else that a direct manifestation
of the completness and orthonormality of
the basis.
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Dirac notation

1 Clearly, every orthonormal basis fje(s) >g
defines its characteristic decomposition of the
identity

I =

Z

ds je(s) >< e(s)j

2 and different decompositions of the identity
define different representations of the same
vector.

Enrico Iacopini QUANTUM MECHANICS Lecture 21 November 20, 2019 10 / 19



QUANTUM
MECHANICS
Lecture 21

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dirac notation

1 Clearly, every orthonormal basis fje(s) >g
defines its characteristic decomposition of the
identity

I =

Z

ds je(s) >< e(s)j

2 and different decompositions of the identity
define different representations of the same
vector.

Enrico Iacopini QUANTUM MECHANICS Lecture 21 November 20, 2019 10 / 19



QUANTUM
MECHANICS
Lecture 21

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dirac notation

For instance, if we use the basis made by the
normalized generalized eigenvectors
jx >” je(x) >
of the position operator x̂, then the generic
vector of the Hilbert space j > will be
represented as

j >=
Z

dx jx >< xj >=
Z

dx (x) jx >

where  (x) ”< xj > is the usual "old" wave
function which, according to the generalized
statistical interpretation, is such that j (x)j2
gives the p.d.f. to measure, on the state j >,
the particle position between x and x+ dx.
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Dirac notation

1 But if we use, instead, the generalized
momentum eigenvectors jp >” je(p) >, then
we can represent the same vector as

j >=
Z

dp jp >< pj >=
Z

dp ffi(p) jp >

where ffi(p) ”< pj > is now the momentum
wave-function and jffi(p)j2 gives the p.d.f. to
measure, on the state j >, a momentum
between p and p+ dp.

2 With the two different decompositions of the
identity we have obtained two different
wave functions describing the same
vector, one in the coordinate space and the
other in the momentum space, respectively.
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QM in 3D

1 The generalization of the Schrödinger
equation in three dimensions is quite
straightforward.

2 The time-dependent Schrödinger equation
says

iℏ @¯
@t
= Ĥ¯

where, as alredy well known, the hamiltonian
operator is obtained from the classical total
energy

H =
p2

2m
+ V (~r)

which, in three dimensions, becomes
1

2m
(p2x + p

2
y + p

2
z) + V (~r)
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equation in three dimensions is quite
straightforward.

2 The time-dependent Schrödinger equation
says

iℏ @¯
@t
= Ĥ¯

where, as alredy well known, the hamiltonian
operator is obtained from the classical total
energy

H =
p2

2m
+ V (~r)

which, in three dimensions, becomes
1

2m
(p2x + p

2
y + p

2
z) + V (~r)
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QM in 3D

Using the usual prescription

px ! `iℏ @
@x
; py ! `iℏ @

@y
; pz ! `iℏ @

@z

we obtain

iℏ@¯
@t
= ` ℏ

2

2m
r2¯+ V (~r)¯

where r2 is the laplacian operator

r2 ” @2

@x2
+

@2

@y2
+

@2

@z2

and the meaning of the w.f. is now that the
probability of finding the particle in the volume
dv = dx dy dz is j¯(~r; t)j2, once the wave
function ¯ has been normalized to the unity in
the whole space.
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QM in 3D

1 In order to give the wave-function definition
that we have done previously, we have
implicitly assumed that the three position
coordinates can be measured simultaneously,
or, in other words, that the operators x̂; ŷ; ẑ
are compatible.

2 This is clearly true, because they are
represented by the multiplication for x; y
and z, respectively, and the multiplication of
real numbers do commute. So

[x̂; ŷ] = [x̂; ẑ] = [ŷ; ẑ] = 0
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QM in 3D

1 Also the three momentum components
represented by the operators
`iℏ@x; `iℏ@y; `iℏ@z do commute and,
therefore, they describe compatible
observables.

2 In fact, a particle can be in a simultaneous
eigenvector (although of generalized type ...)
of all the three momentum components.

Enrico Iacopini QUANTUM MECHANICS Lecture 21 November 20, 2019 16 / 19



QUANTUM
MECHANICS
Lecture 21

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

QM in 3D

1 Also the three momentum components
represented by the operators
`iℏ@x; `iℏ@y; `iℏ@z do commute and,
therefore, they describe compatible
observables.

2 In fact, a particle can be in a simultaneous
eigenvector (although of generalized type ...)
of all the three momentum components.

Enrico Iacopini QUANTUM MECHANICS Lecture 21 November 20, 2019 16 / 19



QUANTUM
MECHANICS
Lecture 21

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

QM in 3D

Concerning the compatiblity of position and
momentum components, from the definition of
the respective operators, it turns out, instead,
that homologous components are
incompatible and we have

[x; px] = [y; py] = [z; pz] = iℏ

whereas non-homologous components are indeed
compatible

[x; py] = [x; pz] = 0

[y; px] = [y; pz] = 0

[z; px] = [z; py] = 0
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QM in 3D

1 But let us come back to the Schrödinger
equation in 3D.

2 If the energy potential V = V (~r) is time
independent, similarly to the
one-dimensional case, there will be a
complete set of stationary states

¯(~r; t) =  (~r) e`iEt=ℏ

where the functions  (~r) satisfy the time
independent Schrödinger equation, that now
reads

` ℏ
2

2m
r2 (~r) + V (~r) (~r) = E  (~r)
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QM in 3D

and the general solution of the time-dependent
Schrödinger equation will be

¯(~r; t) =
X

n

cn¯n(~r; t) =
X

n

cn  n(~r) e
`iEnt=ℏ

where the coefficients cn are determined in the
usual way, from the ¯(~r; 0)

cn =

Z

d3r  ˜n(~r) ¯(~r; 0)

where the  n(~r) are the solutions of the time
independent Schrödinger equation, or, in other
words, the eigenfunctions of the Hamiltonian
operator.
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