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Continuous spectrum

Together with the momentum p̂, another
important operator which has a continuous
spectrum is the position operator x̂.

Enrico Iacopini QUANTUM MECHANICS Lecture 20 November 19, 2019 2 / 21



QUANTUM
MECHANICS
Lecture 20

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Continuous spectrum

1 Its eigenfunction gy(x), corresponding to the
eigenvalue y 2 R, by definition, is such that

x̂ gy(x) ” x ´ gy(x) = y gy(x)

where x is the position variable, whereas y is
the given eigenvalue of the operator x̂.

2 The only possibility to satisfy the above
eigenvalue equation is that the function
gy(x) is always zero except in x.

To satisfy the generalized condition
concerning its finite (and not always null)
scalar product with any w.f., we must have

gy(x) =/ ‹(x` y)
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Continuous spectrum

1 We have to do, again, with a non-square
integrable eigenfunction.

2 This means that, strictly speaking, also for
the position operator x̂ there are no
eigenvectors in the Hilbert space of the
physical states.

3 In other words, we cannot realize a
physical state such that a position
measurement on it gives with certainty
a well defined real number !
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Continuous spectrum

Similarly to what happens for the momentum
generalized eigenvectors, the generalized
eigenfunctions

(

gy(x) = ‹(x` y); y 2 R
)

form a complete, orthonormal set.
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Continuous spectrum

In fact, for any (square-integrable) continuous
function  (x), it exists always the scalar product

— (y) ” < gyj >=
Z

dx g˜y(x) ´  (x) =

=

Z

dx ‹(x` y) (x) =  (y)

and, clearly, we have

 (x) =

Z

dy — (y)gy(x) =

Z

dy  (y)‹(x` y)
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Continuous spectrum

Moreover, the generalized position eigenfunctions
gy(x) = ‹(y ` x) satisfy the Dirac generalized
orthonormality condition.

In fact
Z

dx g˜y(x)gz(x) =

Z

dx ‹(y ` x)gz(x) =

= gz(y) = ‹(y ` z)
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Continuous spectrum

The two examples considered so far, momentum
and position, lead us to the following conclusion.

If the spectrum S ȷ R of the eigenvalues s of an
observable Q̂ is continuous, the corresponding
eigenvectors fe(s); s 2 Sg, although they do
not belong to the Hilbert space, they can be
used as elements of a generalized basis.
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Continuous spectrum

In fact, these generalized eigenvectors e(s)
can be made orthonormal in the Dirac sense:

< e(s)je(t) >= ‹(s` t)

and any normalized vector v 2 H can be written
as

v =
Z

ds ffi(s) e(s)

where the complex function ffi(s) is given by

ffi(s) ”< e(s)jv >
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Generalized statistical interpretation

Concerning the expectation value of Q̂, we have

< Q >=< vjQ̂ v >=

=

Z

ds dt < ffi(s)e(s)jQ̂ ffi(t)e(t) >=

=

Z

ds dt ffi(s)˜ ffi(t) < e(s)jQ̂ e(t) >=

=

Z

ds dt ffi(s)˜ ffi(t) t < e(s)je(t) >=

=

Z

ds dt ffi(s)˜ ffi(t) t ‹(t` s) =
Z

ds jffi(s)j2 s

and jffi(s)j2 represents the probability density
function to obtain a value between s and s+ ds
when measuring Q̂ on v.
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Generalized statistical interpretation

1 The generalized statistical intepretation
agrees, of course, with what we have called
"the Copenaghen interpretation", for which,
j¯(x)j2 is the p.d.f. to find the particle
between x and x+ dx.

2 In fact, the old wave function ¯(x) is
nothing but what we are calling, now, ffi(x)
when the physical vector state is ¯ and the
observable Q̂ is the position x̂

ffi(x) = < gxj¯ >=

Z

dy ‹(x` y)˜¯(y) =

= ¯(x)
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Generalized statistical interpretation

1 Concerning the momentum operator p̂, we
have already said that its generalized
orthonormal eigenfunctions are

e(p) =
1

p
2ıℏ

eipx=ℏ with p 2 R

and one has

ffi(p) = < e(p)j¯ >=
1

p
2ıℏ

Z

dx e`ipx=ℏ ¯(x)

2 The quantity jffi(p)j2 is the p.d.f. to measure
a momentum between p and p+ dp and ffi(p)
can be seen as the wave-function of the state
¯ in the momentum space.
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Exercise N.7

Exercise

In a three dimensional Hilbert space H, the
spectrum of the observable Q is f`1; 0;+1g.
Let fe`; e0; e+g be the orthonormal basis made
by the eigenvectors of Q

Qe` = e`; Qe0 = 0; Qe+ = `e+
If v = ¸e` + ˛e0 + ‚e+ is a generic vector
of H, which is the expectation value of Q on
the physical state described by v ?
Write the condition on the coefficients ¸; ˛; ‚
for which the expectation value of Q is zero.
Is it possible to find a basis ff1; f2; f3g for
which < fijQfi >= 0 ? Explain.
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Compatible and incompatible
observables

1 Up to now, we have considered only
eigenvalues/eigenvectors of a single
observable Q̂.

2 Before continuing, we want to remember that
the eigenvectors of Q̂, corresponding to the
same eigenvalue q, form a linear subspace
since any linear combination of these
eigenvectors is still a Q̂ eigenvector for the
eigenvalue q.

3 Let us call V this linear space. By definition

v 2 V , Q̂v = q v
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Compatible and incompatible
observables

1 Let us consider, now, two observables Q̂1
and Q̂2 and let us assume that [Q̂1; Q̂2] = 0.
Let V1 be the eigenspace of Q̂1 corresponding
to the eigenvalue q1 and let v 2 V1.
Let us consider the vector Q̂2v: we have

Q̂1
“

Q̂2v
”

= Q̂2
“

Q̂1v
”

= q1 Q̂2v

which means that also Q̂2v 2 V1.
2 The subspace V1 is, therefore, invariant also
under Q̂2. But Q̂2 is hermitian and, therefore,
we can find an orthonormal basis of V1 made
by eigenvectors of Q̂2: these vectors are
simultaneously eigenvectors of Q̂1 and Q̂2.
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Compatible and incompatible
observables

1 The procedure can be repeated for all the
eigenvalues of Q̂1 and the conclusion is that,
if Q̂1 and Q̂2 commute, we can find an
orthonormal basis of the whole space which
is made by simultaneous eigenvectors of
both the operators.

2 We say that Q̂1 and Q̂2 are compatible.
3 This means that there are physical states in
which both observables are determinate.

4 If [Q̂1; Q̂2] 6= 0, a basis of common
eigenvectors cannot exist and the observables
Q̂1 and Q̂2 are incompatible (f.i., x̂ and p̂).
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is made by simultaneous eigenvectors of
both the operators.

2 We say that Q̂1 and Q̂2 are compatible.
3 This means that there are physical states in
which both observables are determinate.

4 If [Q̂1; Q̂2] 6= 0, a basis of common
eigenvectors cannot exist and the observables
Q̂1 and Q̂2 are incompatible (f.i., x̂ and p̂).
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The uncertainty principle revisited

1 Let us come, now, to reconsider the
uncertainty principle.

2 We will show that, in the mathematical
framework developed so far, it is not, really,
a principle, but, it is, in fact, a theorem ...

3 Let Â and B̂ two generic observables
(hermitian operators) and let us define the
two following non-hermitian operators

Ĉ ” Â+ i¸ B̂ , Ĉy = Â` i¸ B̂

where ¸ is a generic real number. Then

ĈyĈ =
“

Â` i¸ B̂
” “

Â+ i¸ B̂
”

=

= Â2 + ¸2B̂2 + i¸
h

Â; B̂
i
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= Â2 + ¸2B̂2 + i¸
h
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Â+ i¸ B̂
”

=
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The uncertainty principle revisited

1 Let, now, be ¯ a generic normalized vector
of the Hilbert space. Starting from it, we can
always build an orthonormal basis
e1; :::; en; ::: for which ¯ = e1.

2 Since the vectors feig form a basis, we will
have

Ĉ¯ =
X

i

‚i ei where ‚i ”< eijĈ¯ >

3 Then, by definition

< ¯jĈyĈ¯ >=< Ĉ¯jĈ¯ >=
X

i;j

‚˜i ‚j < eijej >=

=
X

i

j‚ij2
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The uncertainty principle revisited

1 But
P

i j‚ij2 – j‚1j2, which means that, since
by hypothesis e1 = ¯, we have

< ¯jĈyĈ¯ >=
X

i

j‚ij2 – j‚1j2 = ‚˜1‚1 =

=< e1jĈ¯ >˜< e1jĈ¯ >=< Ĉ¯je1 >< e1jĈ¯ >=

=< Ĉ¯j¯ >< ¯jĈ¯ >=< ¯jĈy¯ >< ¯jĈ¯ >

2 or, in other words

< ¯j
“

Â2 + ¸2B̂ + i¸[Â; B̂]
”

¯ > –
– < ¯j

“

Â` i¸B̂
”

¯ >< ¯j
“

Â+ i¸B̂
”

¯ >
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The uncertainty principle revisited

1 which means that

< Â2 > +¸2 < B̂2 > +i¸ < [Â; B̂] > –

–
 

< Â > `i¸ < B̂ >

! 

< Â > +i¸ < B̂ >

!

=

=< Â >2 +¸2 < B̂ >2

2 Therefore, remembering the definition of ff2

in terms of the variance and the average, we
can conclude1 that, for any real number ¸

ff2A + ¸
2ff2B + i¸ < [Â; B̂] > – 0

1Show that the expectation value < [Â; B̂] > is a purely
imaginary quantity.
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The uncertainty principle revisited

1 The second degree equation in the real
variable ¸ that we have obtained, to be
always non-negative, must have the
discriminant smaller or equal to zero:

“

i < [Â; B̂] >
”2 ` 4ff2Aff

2
B » 0

) 4ff2Aff
2
B –

“

i < [Â; B̂] >
”2

2 If we consider, now, for instance, the
observables x̂ and p̂, since [x̂; p̂] = iℏ, we
have

4ff2xff
2
p –

“

i2ℏ
”2 ) ffxffp –

ℏ
2

which is, indeed, the original and well
known, Heisenberg uncertainty principle.
Enrico Iacopini QUANTUM MECHANICS Lecture 20 November 19, 2019 21 / 21



QUANTUM
MECHANICS
Lecture 20

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The uncertainty principle revisited
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observables x̂ and p̂, since [x̂; p̂] = iℏ, we
have
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which is, indeed, the original and well
known, Heisenberg uncertainty principle.
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