QUANTUM MECHANICS Lecture 20

Enrico Iacopini

QUANTUM MECHANICS Lecture 20

Compatible and incompatible observables The uncertainty principle revisited

Enrico Iacopini

November 19, 2019

D. J. Griffiths: paragraphs 3.4, 3.5

Enrico Iacopini

QUANTUM MECHANICS Lecture 20

November 19, 2019

1 / 21

QUANTUM MECHANICS Lecture 20

Enrico Iacopini

Together with the momentum \hat{p} , another important operator which has a **continuous spectrum is the position operator** \hat{x} .

Enrico Iacopini

QUANTUM MECHANICS Lecture 20 November 19, 2019

・ロト ・四ト ・ヨト ・ヨト

3

2 / 21

Continuous spectrum

• Its eigenfunction $g_y(x)$, corresponding to the eigenvalue $y \in R$, by definition, is such that

 $\hat{x} g_y(x) \equiv x \cdot g_y(x) = y g_y(x)$

where x is the position variable, whereas y is the given eigenvalue of the operator \hat{x} .

The only possibility to satisfy the above eigenvalue equation is that the function $g_y(x)$ is always zero except in x.

To satisfy the generalized condition concerning its **finite** (*and not always null*) scalar product with any w.f., we must have

$$g_y(x) = \propto \delta(x-y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

QUANTUM MECHANICS Lecture 20

Continuous spectrum

• Its eigenfunction $g_y(x)$, corresponding to the eigenvalue $y \in R$, by definition, is such that

 $\hat{x} g_y(x) \equiv x \cdot g_y(x) = y g_y(x)$

where x is the position variable, whereas y is the given eigenvalue of the operator \hat{x} .

2 The only possibility to satisfy the above eigenvalue equation is that the function $g_y(x)$ is always zero except in x.

To satisfy the generalized condition concerning its **finite** (*and not always null*) scalar product with any w.f., we must have

$$g_y(x) = \propto \delta(x-y)$$

3

QUANTUM MECHANICS Lecture 20

We have to do, again, with a non-square integrable eigenfunction.

Continuous spectrum

- This means that, strictly speaking, also for the position operator x̂ there are no eigenvectors in the Hilbert space of the physical states.
- In other words, we cannot realize a physical state such that a position measurement on it gives with certainty a well defined real number !

Enrico Iacopini

< ロ > < 同 > < 三 > < 三 > <

э

Continuous spectrum

- We have to do, again, with a non-square integrable eigenfunction.
- This means that, strictly speaking, also for the position operator \hat{x} there are **no** eigenvectors in the Hilbert space of the physical states.
- In other words, we cannot realize a physical state such that a position measurement on it gives with certainty a well defined real number !

Enrico Iacopini

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have to do, again, with a non-square integrable eigenfunction.

- This means that, strictly speaking, also for the position operator x̂ there are no eigenvectors in the Hilbert space of the physical states.
- In other words, we cannot realize a physical state such that a position measurement on it gives with certainty a well defined real number !

Continuous spectrum

MECHANICS Lecture 20

Enrico Iacopini

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Enrico Iacopini

Similarly to what happens for the momentum generalized eigenvectors, the generalized eigenfunctions

$$\left\{g_y(x)=\delta(x-y); \ y\in R
ight\}$$

form a *complete, orthonormal set.*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In fact, for any (square-integrable) continuous function $\psi(x)$, it exists always the scalar product

$$ar{\psi}(y) \;\equiv\; < g_y |\psi> = \int dx \, g_y^*(x) \cdot \psi(x) = \ = \; \int dx \; \delta(x-y) \psi(x) = \; \psi(y)$$

and, clearly, we have

$$\psi(x) = \int dy \, ar{\psi}(y) g_y(x) = \int dy \, \psi(y) \delta(x-y)$$

Enrico Iacopini

QUANTUM MECHANICS Lecture 20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 19, 2019

6 / 21

3

Moreover, the generalized position eigenfunctions $g_y(x) = \delta(y - x)$ satisfy the Dirac generalized orthonormality condition.

In fact

$$\int dx \, g_y^*(x) g_z(x) = \int dx \, \delta(y-x) g_z(x) =$$

= $g_z(y) = \delta(y-z)$

QUANTUM MECHANICS Lecture 20

Enrico Iacopini

Enrico Iacopini

The two examples considered so far, momentum and position, lead us to the following conclusion.

If the spectrum $S \subset R$ of the eigenvalues s of an observable \hat{Q} is continuous, the corresponding eigenvectors $\{e(s); s \in S\}$, although they do not belong to the Hilbert space, they can be used as elements of a generalized basis.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In fact, these generalized eigenvectors e(s) can be made orthonormal in the Dirac sense:

$$\langle \mathbf{e}(s)|\mathbf{e}(t) \rangle = \delta(s-t)$$

and any normalized vector $\mathbf{v} \in \mathcal{H}$ can be written as

$$\mathbf{v} = \int \, ds \, \phi(s) \, \mathbf{e}(s)$$

where the complex function $\phi(s)$ is given by

$$\phi(s) \equiv <\mathbf{e}(s)|\mathbf{v}>$$

Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー

QUANTUM MECHANICS Lecture 20

Concerning the expectation value of \hat{Q} , we have

$$\langle Q \rangle = \langle \mathbf{v} | \hat{Q} \mathbf{v} \rangle =$$

$$= \int ds \, dt \langle \phi(s) \mathbf{e}(s) | \hat{Q} \phi(t) \mathbf{e}(t) \rangle =$$

$$= \int ds \, dt \, \phi(s)^* \, \phi(t) \langle \mathbf{e}(s) | \hat{Q} \mathbf{e}(t) \rangle =$$

$$= \int ds \, dt \, \phi(s)^* \, \phi(t) \, t \langle \mathbf{e}(s) | \mathbf{e}(t) \rangle =$$

$$= \int ds \, dt \, \phi(s)^* \, \phi(t) \, t \, \delta(t-s) = \int ds \, |\phi(s)|^2$$

and $|\phi(s)|^2$ represents the probability density function to obtain a value between s and s + ds when measuring \hat{Q} on \mathbf{v} .

S

10 / 21

- The generalized statistical intepretation agrees, of course, with what we have called "the Copenaghen interpretation", for which, $|\Psi(x)|^2$ is the p.d.f. to find the particle between x and x + dx.
- 2 In fact, the *old* wave function $\Psi(x)$ is nothing but what we are calling, now, $\phi(x)$ when the physical vector state is Ψ and the observable \hat{Q} is the position \hat{x}

$$\begin{split} \phi(x) &= \langle g_x | \Psi \rangle = \int dy \, \delta(x-y)^* \, \Psi(y) = \\ &= \Psi(x) \end{split}$$

QUANTUM MECHANICS Lecture 20

Enrico Iacopini

イロト 不得下 イヨト イヨト 二日

- The generalized statistical intepretation agrees, of course, with what we have called "the Copenaghen interpretation", for which, $|\Psi(x)|^2$ is the p.d.f. to find the particle between x and x + dx.
- 2 In fact, the *old* wave function $\Psi(x)$ is nothing but what we are calling, now, $\phi(x)$ when the physical vector state is Ψ and the observable \hat{Q} is the position \hat{x}

$$\begin{split} \phi(x) &= \langle g_x | \Psi \rangle = \int dy \, \delta(x-y)^* \, \Psi(y) = \\ &= \Psi(x) \end{split}$$

QUANTUM MECHANICS Lecture 20

Enrico Iacopini

3

(日)

• Concerning the momentum operator \hat{p} , we have already said that its generalized orthonormal eigenfunctions are

$$\mathbf{e}(p) = rac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$
 with $p \in R$

and one has

$$\phi(p) = \langle \mathbf{e}(p) | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int dx \, e^{-ipx/\hbar} \, \Psi(x)$$

The quantity $|\phi(p)|^2$ is the p.d.f. to measure a momentum between p and p + dp and $\phi(p)$ can be seen as the wave-function of the state Ψ in the momentum space. QUANTUM MECHANICS Lecture 20

Enrico Iacopini

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• Concerning the momentum operator \hat{p} , we have already said that its generalized orthonormal eigenfunctions are

$$\mathbf{e}(p) = rac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$
 with $p \in R$

and one has

$$\phi(p) = \langle \mathbf{e}(p) | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int dx \, e^{-ipx/\hbar} \, \Psi(x)$$

The quantity $|\phi(p)|^2$ is the p.d.f. to measure a momentum between p and p + dp and $\phi(p)$ can be seen as the wave-function of the state Ψ in the momentum space.

Enrico Iacopini

QUANTUM IECHANICS Lecture 20

<u>Exercise</u>

In a three dimensional Hilbert space \mathcal{H} , the spectrum of the observable Q is $\{-1, 0, +1\}$. Let $\{\mathbf{e}_{-}, \mathbf{e}_{0}, \mathbf{e}_{+}\}$ be the orthonormal basis made by the eigenvectors of Q

$$Qe_{-} = e_{-}; \quad Qe_{0} = 0; \quad Qe_{+} = -e_{+}$$

- If $\mathbf{v} = \alpha \mathbf{e}_{-} + \beta \mathbf{e}_{0} + \gamma \mathbf{e}_{+}$ is a generic vector of \mathcal{H} , which is the expectation value of Q on the physical state described by \mathbf{v} ?
- Write the condition on the coefficients α, β, γ for which the expectation value of Q is zero.
- Is it possible to find a basis $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ for which $\langle \mathbf{f}_i | Q \mathbf{f}_i \rangle = 0$? Explain.

Enrico Iacopini

- Up to now, we have considered only eigenvalues/eigenvectors of a single observable Q.
- ² Before continuing, we want to remember that the eigenvectors of \hat{Q} , **corresponding to the same eigenvalue** q, form a **linear subspace** since any linear combination of these eigenvectors is still a \hat{Q} eigenvector for the eigenvalue q.
- 0 Let us call $\mathcal V$ this linear space. By definition

$$\mathbf{v} \in \mathcal{V} \Leftrightarrow \widehat{Q}\mathbf{v} = q\,\mathbf{v}$$

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QUANTUM MECHANICS Lecture 20

- Up to now, we have considered only eigenvalues/eigenvectors of a single observable Q.
- **2** Before continuing, we want to remember that the eigenvectors of \hat{Q} , **corresponding to the same eigenvalue** q, form a **linear subspace** since any linear combination of these eigenvectors is still a \hat{Q} eigenvector for the eigenvalue q.
- 0 Let us call $\mathcal V$ this linear space. By definition

$$\mathbf{v} \in \mathcal{V} \Leftrightarrow \hat{Q}\mathbf{v} = q\,\mathbf{v}$$

3

(日)

- Up to now, we have considered only eigenvalues/eigenvectors of a single observable Q.
- ² Before continuing, we want to remember that the eigenvectors of \hat{Q} , **corresponding to the same eigenvalue** q, form a **linear subspace** since any linear combination of these eigenvectors is still a \hat{Q} eigenvector for the eigenvalue q.
- ${ig 0}$ Let us call ${\cal V}$ this linear space. By definition

$$\mathbf{v} \in \mathcal{V} \Leftrightarrow \hat{Q}\mathbf{v} = q \, \mathbf{v}$$

イロト 不得 トイヨト イヨト ニヨー

QUANTUM MECHANICS Lecture 20

• Let us consider, now, two observables \hat{Q}_1 and \hat{Q}_2 and let us assume that $[\hat{Q}_1, \hat{Q}_2] = 0$. Let \mathcal{V}_1 be the eigenspace of \hat{Q}_1 corresponding to the eigenvalue q_1 and let $\mathbf{v} \in \mathcal{V}_1$. Let us consider the vector $\hat{Q}_2\mathbf{v}$: we have

$$\hat{Q}_1\left(\hat{Q}_2\mathbf{v}
ight)=\hat{Q}_2\left(\hat{Q}_1\mathbf{v}
ight)=q_1\,\hat{Q}_2\mathbf{v}$$

which means that also $\hat{Q}_2 \mathbf{v} \in \mathcal{V}_1$.

The subspace V_1 is, therefore, **invariant** also under \hat{Q}_2 . But \hat{Q}_2 is hermitian and, therefore, we can find an orthonormal basis of V_1 made by eigenvectors of \hat{Q}_2 : these vectors are **simultaneously** eigenvectors of \hat{Q}_1 and \hat{Q}_2 .

Enrico Iacopini

QUANTUM MECHANICS Lecture 20

• Let us consider, now, two observables \hat{Q}_1 and \hat{Q}_2 and let us assume that $[\hat{Q}_1, \hat{Q}_2] = 0$. Let \mathcal{V}_1 be the eigenspace of \hat{Q}_1 corresponding to the eigenvalue q_1 and let $\mathbf{v} \in \mathcal{V}_1$. Let us consider the vector $\hat{Q}_2\mathbf{v}$: we have

$$\hat{Q}_1\left(\hat{Q}_2\mathbf{v}
ight)=\hat{Q}_2\left(\hat{Q}_1\mathbf{v}
ight)=q_1\,\hat{Q}_2\mathbf{v}$$

which means that also $\hat{Q}_2 \mathbf{v} \in \mathcal{V}_1$.

The subspace V_1 is, therefore, **invariant** also under \hat{Q}_2 . But \hat{Q}_2 is hermitian and, therefore, we can find an orthonormal basis of V_1 made by eigenvectors of \hat{Q}_2 : these vectors are **simultaneously** eigenvectors of \hat{Q}_1 and \hat{Q}_2 .

Enrico Iacopini

- The procedure can be repeated for all the eigenvalues of \hat{Q}_1 and the conclusion is that, if \hat{Q}_1 and \hat{Q}_2 commute, we can find an orthonormal basis of the whole space which is made by simultaneous eigenvectors of both the operators.
- ② We say that \hat{Q}_1 and \hat{Q}_2 are **compatible**.
- This means that there are physical states in which both observables are determinate.
- If $[\hat{Q}_1, \hat{Q}_2] \neq 0$, a basis of common eigenvectors cannot exist and the observables \hat{Q}_1 and \hat{Q}_2 are **incompatible** (f.i., \hat{x} and \hat{p}).

- The procedure can be repeated for all the eigenvalues of \hat{Q}_1 and the conclusion is that, if \hat{Q}_1 and \hat{Q}_2 commute, we can find an orthonormal basis of the whole space which is made by simultaneous eigenvectors of both the operators.
- **2** We say that \hat{Q}_1 and \hat{Q}_2 are **compatible**.
- This means that there are physical states in which both observables are determinate.
- If $[\hat{Q}_1, \hat{Q}_2] \neq 0$, a basis of common eigenvectors cannot exist and the observables \hat{Q}_1 and \hat{Q}_2 are **incompatible** (f.i., \hat{x} and \hat{p}).

- The procedure can be repeated for all the eigenvalues of \hat{Q}_1 and the conclusion is that, if \hat{Q}_1 and \hat{Q}_2 commute, we can find an orthonormal basis of the whole space which is made by simultaneous eigenvectors of both the operators.
- **2** We say that \hat{Q}_1 and \hat{Q}_2 are **compatible**.
- This means that there are physical states in which both observables are determinate.
- If $[\hat{Q}_1, \hat{Q}_2] \neq 0$, a basis of common eigenvectors cannot exist and the observables \hat{Q}_1 and \hat{Q}_2 are **incompatible** (f.i., \hat{x} and \hat{p}).

QUANTUM MECHANICS Lecture 20

- The procedure can be repeated for all the eigenvalues of \hat{Q}_1 and the conclusion is that, if \hat{Q}_1 and \hat{Q}_2 commute, we can find an orthonormal basis of the whole space which is made by simultaneous eigenvectors of both the operators.
- **2** We say that \hat{Q}_1 and \hat{Q}_2 are **compatible**.
- This means that there are physical states in which both observables are determinate.
- If $[\hat{Q}_1, \hat{Q}_2] \neq 0$, a basis of common eigenvectors cannot exist and the observables \hat{Q}_1 and \hat{Q}_2 are **incompatible** (f.i., \hat{x} and \hat{p}).

- Let us come, now, to reconsider the **uncertainty principle**.
- We will show that, in the mathematical framework developed so far, it is not, really, a principle, but, it is, in fact, a theorem ...
- Let and B two generic observables (hermitian operators) and let us define the two following non-hermitian operators

$$\hat{C} \equiv \hat{A} + i\alpha \,\hat{B} \quad \Leftrightarrow \quad \hat{C}^{\dagger} = \hat{A} - i\alpha \,\hat{B}$$

where α is a generic real number. Then

 $\hat{C}^{\dagger}\hat{C} = (\hat{A} - i\alpha \hat{B})(\hat{A} + i\alpha \hat{B}) = \\ = \hat{A}^{2} + \alpha^{2}\hat{B}^{2} + i\alpha [\hat{A}, \hat{B}]$

QUANTUN MECHANICS Lecture 20

Enrico Iacopini

- Let us come, now, to reconsider the uncertainty principle.
- framework developed so far, it **is not**, really,

$$\hat{C} \equiv \hat{A} + i\alpha \, \hat{B} \quad \Leftrightarrow \quad \hat{C}^{\dagger} = \hat{A} - i\alpha \, \hat{B}$$

Enrico Iacopini

17 / 21

- Let us come, now, to reconsider the uncertainty principle.
- We will show that, in the mathematical framework developed so far, it is not, really, a principle, but, it is, in fact, a theorem ...
- I Let \hat{A} and \hat{B} two generic observables

$$\hat{C} \equiv \hat{A} + i\alpha \, \hat{B} \quad \Leftrightarrow \quad \hat{C}^{\dagger} = \hat{A} - i\alpha \, \hat{B}$$

$$\hat{C}^{\dagger}\hat{C} = \left(\hat{A} - i\alpha\,\hat{B}\right)\left(\hat{A} + i\alpha\,\hat{B}\right) = \\ = \hat{A}^2 + \alpha^2\hat{B}^2 + i\alpha\left[\hat{A},\hat{B}\right]$$

Enrico Iacopini

3

17 / 21

- Let us come, now, to reconsider the **uncertainty principle**.
- We will show that, in the mathematical framework developed so far, it is not, really, a principle, but, it is, in fact, a theorem ...
- Solution Let \hat{A} and \hat{B} two generic observables (hermitian operators) and let us define the two following non-hermitian operators

$$\hat{C} \equiv \hat{A} + i\alpha \,\hat{B} \quad \Leftrightarrow \quad \hat{C}^{\dagger} = \hat{A} - i\alpha \,\hat{B}$$

where α is a generic real number. Then

$$\hat{C}^{\dagger}\hat{C} = (\hat{A} - i\alpha \hat{B})(\hat{A} + i\alpha \hat{B}) = \\ = \hat{A}^{2} + \alpha^{2}\hat{B}^{2} + i\alpha [\hat{A}, \hat{B}]$$

Enrico Iacopini

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

2019 17 / 21

QUANTUM MECHANICS Lecture 20

- Let, now, be Ψ a generic normalized vector of the Hilbert space. Starting from it, we can always build an orthonormal basis $\mathbf{e}_1, \dots, \mathbf{e}_n, \dots$ for which $\Psi = \mathbf{e}_1$.
- Since the vectors {e_i} form a basis, we will have

$$\widehat{\mathcal{C}} \, oldsymbol{\Psi} = \sum\limits_i \gamma_i \, oldsymbol{e}_i \, \, where \, \, \gamma_i \equiv < oldsymbol{e}_i | \widehat{\mathcal{C}} \, oldsymbol{\Psi} >$$

- Then, by definition
- $< oldsymbol{\Psi} | \hat{\mathcal{C}}^{\dagger} \hat{\mathcal{C}} oldsymbol{\Psi} > = < \hat{\mathcal{C}} oldsymbol{\Psi} | \hat{\mathcal{C}} oldsymbol{\Psi} > = \sum\limits_{i,j} \gamma_i^* \gamma_j < \mathbf{e}_i | \mathbf{e}_j > =$

QUANTUM MECHANICS Lecture 20

- Let, now, be Ψ a generic normalized vector of the Hilbert space. Starting from it, we can always build an orthonormal basis $\mathbf{e}_1, \dots, \mathbf{e}_n, \dots$ for which $\Psi = \mathbf{e}_1$.
- Since the vectors {e_i} form a basis, we will have

$$\widehat{C} \, oldsymbol{\Psi} = \sum\limits_i \gamma_i \, oldsymbol{e}_i \; \; where \; \; \gamma_i \equiv < oldsymbol{e}_i | \widehat{C} \, oldsymbol{\Psi} >$$

Then, by definition

 $<oldsymbol{\Psi}|\widehat{C}^{\dagger}\widehat{C}oldsymbol{\Psi}>=<\widehat{C}oldsymbol{\Psi}|\widehat{C}oldsymbol{\Psi}>=\sum\limits_{i,j}\gamma_{i}^{*}\gamma_{j}<oldsymbol{e}_{i}|oldsymbol{e}_{j}>=$

QUANTUM MECHANICS Lecture 20

Enrico Iacopini

- Let, now, be Ψ a generic normalized vector of the Hilbert space. Starting from it, we can always build an orthonormal basis $\mathbf{e}_1, \dots, \mathbf{e}_n, \dots$ for which $\Psi = \mathbf{e}_1$.
- 2 Since the vectors $\{\mathbf{e}_i\}$ form a basis, we will have

$$\hat{C} \, oldsymbol{\Psi} = \sum\limits_i \gamma_i \, oldsymbol{e}_i \; \; where \; \; \gamma_i \equiv < oldsymbol{e}_i | \hat{C} \, oldsymbol{\Psi} >$$

Then, by definition

$$<\Psi|\hat{\mathcal{C}}^{\dagger}\hat{\mathcal{C}}\Psi>=<\hat{\mathcal{C}}\Psi|\hat{\mathcal{C}}\Psi>=\sum\limits_{i,j}\gamma_{i}^{*}\gamma_{j}<\mathbf{e}_{i}|\mathbf{e}_{j}>=$$

 $=\sum_{i}|\gamma_{i}|^{2}$

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

QUANTUM MECHANICS Lecture 20

AECHANICS Lecture 20

Enrico Iacopini

- But $\sum_i |\gamma_i|^2 \ge |\gamma_1|^2$, which means that, since by hypothesis $\mathbf{e}_1 = \mathbf{\Psi}$, we have
- $< oldsymbol{\Psi} | \widehat{\mathcal{C}}^{\dagger} \widehat{\mathcal{C}} oldsymbol{\Psi} > = \sum\limits_{i} |\gamma_{i}|^{2} \ge |\gamma_{1}|^{2} = \gamma_{1}^{*} \gamma_{1} = 0$
- $= <\mathbf{e}_1 |\hat{C}\Psi>^* < \mathbf{e}_1 |\hat{C}\Psi> = <\hat{C}\Psi |\mathbf{e}_1> < \mathbf{e}_1 |\hat{C}\Psi> =$
- $= <\hat{C}\Psi|\Psi> <\Psi|\hat{C}\Psi> = <\Psi|\hat{C}^{\dagger}\Psi> <\Psi|\hat{C}\Psi>$

In other words

 $<\Psi|\left(\hat{A}^{2}+lpha^{2}\hat{B}+ilpha[\hat{A},\hat{B}]
ight)\Psi>\geq \ \geq <\Psi|\left(\hat{A}-ilpha\hat{B}
ight)\Psi><\Psi|\left(\hat{A}+ilpha\hat{B}
ight)\Psi>$

MECHANICS Lecture 20

Enrico Iacopini

• But $\sum_i |\gamma_i|^2 \ge |\gamma_1|^2$, which means that, since by hypothesis $\mathbf{e}_1 = \mathbf{\Psi}$, we have

Or, in other words

$$<\Psi|\left(\hat{A}^{2}+lpha^{2}\hat{B}+ilpha[\hat{A},\hat{B}]
ight)\Psi>\geq \ \geq <\Psi|\left(\hat{A}-ilpha\hat{B}
ight)\Psi><\Psi|\left(\hat{A}+ilpha\hat{B}
ight)\Psi>$$

3

which means that

$$< \hat{A}^2 > +\alpha^2 < \hat{B}^2 > +i\alpha < [\hat{A}, \hat{B}] > \ge \\ \ge \left(< \hat{A} > -i\alpha < \hat{B} > \right) \left(< \hat{A} > +i\alpha < \hat{B} > \right) = \\ = < \hat{A} >^2 +\alpha^2 < \hat{B} >^2$$

Therefore, remembering the definition of σ^2 in terms of the variance and the average, we can conclude¹ that, for any real number α

$$\sigma_{A}^{2} + \alpha^{2} \sigma_{B}^{2} + i\alpha < [\hat{A}, \hat{B}] > \ge 0$$

¹Show that the expectation value $< [\hat{A}, \hat{B}] >$ is a purely imaginary quantity.

Enrico Iacopini

QUANTUM MECHANICS Lecture 20

which means that

² Therefore, remembering the definition of σ^2 in terms of the variance and the average, we can conclude¹ that, for any real number α

$$\sigma_{A}^{2} + \alpha^{2}\sigma_{B}^{2} + i\alpha < [\hat{A}, \hat{B}] > \geq 0$$

¹Show that the expectation value $< [\hat{A}, \hat{B}] >$ is a purely imaginary quantity.

Enrico Iacopini

QUANTUM MECHANICS Lecture 20

The second degree equation in the real variable α that we have obtained, to be always non-negative, must have the discriminant smaller or equal to zero:

$$(i < [\hat{A}, \hat{B}] >)^2 - 4\sigma_A^2 \sigma_B^2 \le 0 \Rightarrow 4\sigma_A^2 \sigma_B^2 \ge (i < [\hat{A}, \hat{B}] >)^2$$

2 If we consider, now, for instance, the observables \hat{x} and \hat{p} , since $[\hat{x}, \hat{p}] = i\hbar$, we have

$$4\sigma_x^2 \sigma_p^2 \ge (i^2 \hbar)^2 \Rightarrow \sigma_x \sigma_p \ge \frac{\hbar}{2}$$

which is, indeed, the original and well known, Heisenberg uncertainty principle.

Enrico Iacopini

November 19, 2019 21 / 21

QUANTUM IECHANICS Lecture 20

The second degree equation in the real variable α that we have obtained, to be always non-negative, must have the discriminant smaller or equal to zero:

$$(i < [\hat{A}, \hat{B}] >)^2 - 4\sigma_A^2 \sigma_B^2 \le 0 \Rightarrow 4\sigma_A^2 \sigma_B^2 \ge (i < [\hat{A}, \hat{B}] >)^2$$

2 If we consider, now, for instance, the observables \hat{x} and \hat{p} , since $[\hat{x}, \hat{p}] = i\hbar$, we have

$$4\sigma_x^2 \sigma_p^2 \ge (i^2 \hbar)^2 \implies \sigma_x \sigma_p \ge \frac{\hbar}{2}$$

which is, indeed, the original and well known, **Heisenberg uncertainty principle.**

Enrico Iacopini

QUANTUM IECHANICS Lecture 20