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Still about the eigenvectors of a
hermitian operator

In the previous lecture, we have concluded that
the determinate states of an observable Q are
described by the eigenvectors of the self-adjoint
(hermitian) operator Q̂, representing that
particular observable.
We have also said that the opposite is not
always true.
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Still about the eigenvectors of a
hermitian operator

We need, in fact, to distinguish two cases:

the spectrum of Q̂ is discrete,
which means that the eigenvalues are
separated one another;

the spectrum of Q̂ is continuous,
which means that the eigenvalues fill some
real range.
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Still about the eigenvectors of a
hermitian operator

1 In the case of discrete spectrum, the
eigenvectors (eigenfunctions) can be
normalized and they belong to the
Hilbert space.

2 According to the postulates of QM,
each of them represents a physical state
which is a determinate state for the
observable that we are considering.
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Discrete spectrum

Let us remark also that

1 Since the operator representing the
observable is self-adjoint, the eigenvalues are
real (which is true also in case of continuous
spectrum ...).

2 The eigenvectors (eigenfunctions)
corresponding to different eigenvalues are
mutually orthogonal, in fact

<  1jQ̂ 2 >=< Q̂ 1j 2 >
) q2 <  1j 2 >= q1 < ¯1j 2 >)<  1j 2 >= 0

where the last implication comes from the
fact that, by hypothesis, q1 6= q2.
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Discrete spectrum

1 This is why stationary states corresponding,
for instance, to different energies are
orthogonal: they are eigenfunctions
corresponding to different eigenvalues.

2 If an eigenvalue is degenerate, we cannot say
anything about the scalar product of two
independent eigenvectors corresponding to
the same eigenvalue.

3 However, there exists a well-defined
procedure to find an orthonormal basis of
the linear subspace made by the eigenvectors
corresponding to the same eigenvalue
(Gram-Schmidt procedure).
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Discrete spectrum

1 So, even in presence of degeneracy, the
eigenvectors (eigenfunctions) of a hermitian
operator with a discrete spectrum can always
be choosen to be orthonormal.

2 This happens, for instance, in case of
finite-dimensional Hilbert spaces, where the
spectrum of any operator can only be
discrete.
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Discrete spectrum

1 This property for which, given a generic
hermitian operator, we can always find an
orthonormal basis of the Hilbert space which
is made by its eigenvectors, does not
generalize to infinite-dimensional spaces.

2 However, following Dirac, we will assume
that every observable has this property.

3 The reason is physical. If we measure that
particular observable Q̂ on any physical
state, we will obtain a determinate state of
Q̂, which means that any state must be a
linear combination of such states.

Enrico Iacopini QUANTUM MECHANICS Lecture 19 November 13, 2019 8 / 22



QUANTUM
MECHANICS
Lecture 19

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Discrete spectrum

1 This property for which, given a generic
hermitian operator, we can always find an
orthonormal basis of the Hilbert space which
is made by its eigenvectors, does not
generalize to infinite-dimensional spaces.

2 However, following Dirac, we will assume
that every observable has this property.

3 The reason is physical. If we measure that
particular observable Q̂ on any physical
state, we will obtain a determinate state of
Q̂, which means that any state must be a
linear combination of such states.

Enrico Iacopini QUANTUM MECHANICS Lecture 19 November 13, 2019 8 / 22



QUANTUM
MECHANICS
Lecture 19

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Discrete spectrum

1 This property for which, given a generic
hermitian operator, we can always find an
orthonormal basis of the Hilbert space which
is made by its eigenvectors, does not
generalize to infinite-dimensional spaces.

2 However, following Dirac, we will assume
that every observable has this property.

3 The reason is physical. If we measure that
particular observable Q̂ on any physical
state, we will obtain a determinate state of
Q̂, which means that any state must be a
linear combination of such states.

Enrico Iacopini QUANTUM MECHANICS Lecture 19 November 13, 2019 8 / 22



QUANTUM
MECHANICS
Lecture 19

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Discrete spectrum

1 In other words, every hermitian operator
representing a physical observable and
having a discrete spectrum, has the
eigenvectors that form a complete set and,
therefore, any vector belonging to the
Hilbert space can be expressed as a
linear combination of them.

2 Moreover, thanks to the Gram-Schmidt
orthonormalization procedure, starting from
the above complete set, we can always define
an orthonormal basis of eigenvectors.
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Discrete spectrum

1 This means that if Q̂ is an observable with a
discrete, non-degenerate spectrum, then,
in the Hilbert space of the physical states,
we can define an orthonormal basis fe(qj)g
made by the eigenvectors of Q̂ corresponding
to the eigenvalues qj.
Therefore, a generic physical state described
by the vector v can be written as

v =
X

j

cj e(qj) where cj ”< e(qj)jv >

2 If we measure the observable Q̂ on the state
v, the only possible outcome is an eigenvalue
of Q̂ and the probability to obtain a
particular value qk is jckj2 = j < e(qk)jv > j2.
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Discrete spectrum

1 But what happens if the spectrum of the
observable Q̂ is discrete, but degenerate ?

2 Also in this case, as we have already said, we
can define an orthonormal basis made by
eigenvectors (determinate states) of Q̂, but,
now, the eigenvalues qj are not enough
to label these vectors, because of the
degeneracy.
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Discrete spectrum

Let us write this orthonormal basis as fe(qj; k)g,
where the parameter k is introduced to
distinguish the eigenvectors of Q̂ corresponding
to the same eigenvalue. By definition we have

Q̂ e(qj; k) = qj e(qj; k)

< e(qi; k1)je(qj); k2 >= 0 if qi 6= qj

< e(qi; k1)je(qi); k2 >= ‹k1k2
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Discrete spectrum

1 The generic state described by the vector v
can now be represented in this basis as

v =
X

qj;k

c(qj; k) e(qj; k); with

c(qj; k) = < e(qj; k)jv >
2 A measurement of Q̂ will result again only in
an eigenvalue qs of Q̂, but, because of the
degeneracy, the probability of measuring such
a value (if there are no conditions on k) is
now

X

k

jc(qs; k)j2

because all the states e(qs; k), no matter
what k is, can contribute !
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Continuous spectrum

1 In case of a continuous spectrum, the
eigenvectors do not belong to the Hilbert
space because they cannot be normalized.

2 However, we accept them as possible
generalized eigenvectors if they have a
finite scalar product with any function
(vector) of the Hilbert space.

3 Realizable physical states (normalizable)
can only be linear combinations (wave
packets) of these generalized eigenvectors,
corresponding to different eigenvalues.

4 This implies that the observable Q̂, strictly
speaking, does not admit determinate
states.
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(vector) of the Hilbert space.

3 Realizable physical states (normalizable)
can only be linear combinations (wave
packets) of these generalized eigenvectors,
corresponding to different eigenvalues.

4 This implies that the observable Q̂, strictly
speaking, does not admit determinate
states.
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Continuous spectrum

1 This is the case, for instance, of the
momentum operator p̂ = `iℏ d

dx
.

2 An eigenfunction of p̂ for the eigenvalue p
should satisfy the equation

p̂  p(x) = p p(x) ) `iℏd p
dx

= p p

)  p(x) = Aeipx=ℏ

3 These eigenfunctions are not square
integrable, which means that the operator p̂
has not eigenvectors in the Hilbert space.
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Continuous spectrum

1 This implies that we cannot realize
physical states with a perfectly definite
momentum !

2 However, we accept these functions as
generalized eigenvectors because, although
they cannot be normalized, they have a finite
scalar product with any square-integrable
function  (Dirac condition),

Z

dx ˜(x) p(x) = A

Z

dx ˜(x) eipx=ℏ = c(p) 2 C
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Normalization

1 Coming to the normalization of these
functions, let’s start by remembering that

Z

dx ei”x = 2ı ‹(x)

2 therefore, if we define the normalization
constant of  p in such a way that

 p(x) ”
1

p
2ıℏ

eipx

the momentum generalized eigenfunctions
satisfy the Dirac orthonormality condition
Z

dx ˜p(x) q(x) =
1

2ıℏ

Z

dx eix(q`p)=ℏ =

=
1

2ı

Z

dy eiy(q`p) = ‹(q ` p)
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Continuous spectrum

1 The set f p(x); p 2 Rg of these
eigenfunctions form an orthonormal,
generalized complete set.

2 But, what exactly do we mean with this
sentence ?
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Continuous spectrum

Let us consider a generic normalized wave
function  (x).
In case of a finite or numerable orthonormal
basis  n, we already know that

 (x) =
X

n

cn  n(x)

where the complex coefficients cn are the scalar
product of the functions  n with  :

cn ”<  nj >=
Z

dx ˜n(x) (x)

and one has

1 =

Z

dx j (x)j2 =
X

n

jcnj2
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Continuous spectrum

1 Let us consider, now, the momentum
eigenfunctions  p(x). We know that they are
orthonormal in the Dirac sense. If, in close
analogy to the numerable case, we define

c(p) ” ~ (p) = <  pj >=
Z

dx ˜p(x) (x) =

=
1

p
2ıℏ

Z

dx e`ipx=ℏ (x)

2 the Fourier transform theory guarantees that

 (x) =

Z

dp c(p) p(x) ”
Z

dp ~ (p) p(x)

1 =

Z

dx j (x)j2 =
Z

dp j ~ (x)j2
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About the Fourier transform

In fact, the Fourier transform theory states that,
if f(x) is a continuous integrable function, then
we can define its Fourier transform f̂(k) as
follows

f̂(k) =
1
p
2ı

Z

dx f(x) e`ikx

and the inverse Fourier transform of f̂(k)

1
p
2ı

Z

dk f̂(k) eikx

gives back the original function f(x)

f(x) =
1
p
2ı

Z

dk f̂(k) eikx
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Continuous spectrum

It is easy, now, to verify that ~ (p) is simply
proportional to the Fourier transform  ̂(k) of
the w.f.  (x), evaluated in k = p=ℏ: in fact

~ (p) ” 1
p
2ıℏ

Z

dx e`ipx=ℏ (x) =

=
1
p
ℏ
 ̂

 

p

ℏ

!

and, because of the inverse Fourier transform
theorem, we have indeed that
Z

dp ~ (p) p(x) =

Z

dp
1
p
ℏ
 ̂

 

p

ℏ

!

1
p
2ıℏ

eipx=ℏ =

=
1
p
2ı

Z

dp

ℏ
 ̂

 

p

ℏ

!

eix
p

ℏ =
1
p
2ı

Z

dk  ̂(k)eikx =

=  (x)
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