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Still about the eigenvectors of a
hermitian operator

Enrico Iacopini

In the previous Lecture, we have concluded that
the determinate states of an observable @ are
described by the eigenvectors of the self-adjoint
(hermitian) operator Q, representing that
particular observable.

We have also said that the opposite is not
always true.
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|
Still about the eigenvectors of a
hermitian operator

Enrico Iacopini

We need, in fact, to distinguish two cases:

@ the spectrum of Q is discrete,
which means that the eigenvalues are
separated one another;

@ the spectrum of @ is continuous,
which means that the eigenvalues fill some
real range.
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Still about the eigenvectors of a
hermitian operator

Enrico Iacopini

© In the case of discrete spectrum, the
eigenvectors (eigenfunctions) can be
normalized and they belong to the
Hilbert space.
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Still about the eigenvectors of a
hermitian operator

Enrico Iacopini

© In the case of discrete spectrum, the
eigenvectors (eigenfunctions) can be
normalized and they belong to the
Hilbert space.

@ According to the postulates of QM,
each of them represents a physical state
which is a determinate state for the
observable that we are considering.
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|
Discrete spectrum

Enrico Iacopini

Let us remark also that

@ Since the operator representing the
observable is self-adjoint, the eigenvalues are
real (which is true also in case of continuous

spectrum ...).
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Discrete spectrum

Let us remark also that Enrico Tacopini

@ Since the operator representing the
observable is self-adjoint, the eigenvalues are
real (which is true also in case of continuous

spectrum ...).

© The eigenvectors (eigenfunctions)
corresponding to different eigenvalues are
mutually orthogonal, in fact

< Y1 |QYW2 >=< QUY1|¥2 >
= g2 < Y1|¥2 >=q1 < V1|%2 >=< 1|y >=0

where the Last implication comes from the
fact that, by hypothesis, g1 7 g-.
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Discrete spectrum

@ This is why stationary states corresponding, Enrico Iacopini
for instance, to different energies are
orthogonal: they are eigenfunctions
corresponding to different eigenvalues.
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Discrete spectrum

@ This is why stationary states corresponding, Enrico Iacopini
for instance, to different energies are
orthogonal: they are eigenfunctions
corresponding to different eigenvalues.

@ If an eigenvalue is degenerate, we cannot say
anything about the scalar product of two
independent eigenvectors corresponding to
the same eigenvalue.
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Discrete spectrum

@ This is why stationary states corresponding, Etucollacopiny

for instance, to different energies are
orthogonal: they are eigenfunctions
corresponding to different eigenvalues.

@ If an eigenvalue is degenerate, we cannot say
anything about the scalar product of two
independent eigenvectors corresponding to
the same eigenvalue.

© However, there exists a well-defined
procedure to find an orthonormal basis of
the Llinear subspace made by the eigenvectors
corresponding to the same eigenvalue
(Gram-Schmidt procedure).
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Discrete spectrum

Enrico Iacopini

@ So, even in presence of degeneracy, the
eigenvectors (eigenfunctions) of a hermitian
operator with a discrete spectrum can always
be choosen to be orthonormal.
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Discrete spectrum

Enrico Iacopini

@ So, even in presence of degeneracy, the
eigenvectors (eigenfunctions) of a hermitian
operator with a discrete spectrum can always
be choosen to be orthonormal.

© This happens, for instance, in case of
finite-dimensional Hilbert spaces, where the
spectrum of any operator can only be
discrete.
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Discrete spectrum

Enrico Iacopini

@ This property for which, given a generic
hermitian operator, we can always find an
orthonormal basis of the Hilbert space which
is made by its eigenvectors, does not
generalize to infinite-dimensional spaces.
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Discrete spectrum
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@ This property for which, given a generic
hermitian operator, we can always find an
orthonormal basis of the Hilbert space which
is made by its eigenvectors, does not
generalize to infinite-dimensional spaces.

@ However, following Dirac, we will assume
that every observable has this property.
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Discrete spectrum

Enrico Iacopini

@ This property for which, given a generic
hermitian operator, we can always find an
orthonormal basis of the Hilbert space which
is made by its eigenvectors, does not
generalize to infinite-dimensional spaces.

@ However, following Dirac, we will assume
that every observable has this property.

© The reason is physical. If we measure that
particular observable Q on any physical
state, we will obtain a determinate state of
@, which means that any state must be a
Linear combination of such states.
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Discrete spectrum

Enrico Iacopini

© In other words, every hermitian operator
representing a physical observable and
having a discrete spectrum, has the
eigenvectors that form a complete set and,
therefore, any vector belonging to the
Hilbert space can be expressed as a
Linear combination of them.
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Discrete spectrum

Enrico Iacopini

© In other words, every hermitian operator
representing a physical observable and
having a discrete spectrum, has the
eigenvectors that form a complete set and,
therefore, any vector belonging to the
Hilbert space can be expressed as a
Linear combination of them.

@ Moreover, thanks to the Gram-Schmidt
orthonormalization procedure, starting from
the above complete set, we can always define
an orthonormal basis of eigenvectors.
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Discrete spectrum

@ This means that if @Q is an observable with a [EmED 1E@erii
discrete, non-degenerate spectrum, then,
in the Hilbert space of the physical states,
we can define an orthonormal basis {e(g;)}
made by the eigenvectors of Q corresponding
to the eigenvalues g;.
Therefore, a generic physical state described
by the vector v can be written as

v=) cje(q;) where c; =< e(q)lv>
3
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Discrete spectrum

@ This means that if @Q is an observable with a [EmED 1E@erii
discrete, non-degenerate spectrum, then,
in the Hilbert space of the physical states,
we can define an orthonormal basis {e(g;)}
made by the eigenvectors of Q corresponding
to the eigenvalues g;.
Therefore, a generic physical state described
by the vector v can be written as

v=) cje(q;) where c; =< e(q)lv>
J
@ If we measure the observable Q on the state
v, the only possible outcome is an eigenvalue
of @ and the probability to obtain a
particular value gk is |ck]? = | < e(qr)|v > |2.
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Discrete spectrum

Enrico Iacopini

© But what happens if the spectrum of the
observable Q is discrete, but degenerate ?
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Discrete spectrum

Enrico Iacopini

© But what happens if the spectrum of the
observable Q is discrete, but degenerate ?

@ ALlso in this case, as we have already said, we
can define an orthonormal basis made by
eigenvectors (determinate states) of Q, but,
now, the eigenvalues g; are not enough
to Label these vectors, because of the
degeneracy.
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Discrete spectrum

Enrico Iacopini

Let us write this orthonormal basis as {e(q;, k)},
where the parameter Kk is introduced to
distinguish the eigenvectors of Q corresponding
to the same eigenvalue. By definition we have

Qe(as, k) =q; e(q;, k)
< e(qs ki1)le(qs), ko >=0 if q; # qy
< e(qs ki1)le(qi), ko >= Okik,

Enrico Iacopini QUANTUM MECHANICS Lecture 19 November 13, 2019 12 / 22



Discrete spectrum

@ The generic state described by the vector v
can now be represented in this basis as

v = ) c(as k) e(as k), with
a5,k
c(g;, k) = <e(q, k)v>
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Discrete spectrum

@ The generic state described by the vector v Enrico Iacopini
can now be represented in this basis as
v = ) c(as k) e(as k), with
a5,k
c(a;, k) = <e(ag k)v>
@ A measurement of Q will result again only in
an eigenvalue gs of Q, but, because of the

degeneracy, the probability of measuring such
a value (if there are no conditions on k) is

now
> le(as, k)12
k

because all the states e(gs, k), no matter
what k is, can contribute !
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Continuous spectrum

Enrico Iacopini
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Continuous spectrum
@ In case of a continuous spectrum, the Enrico Iacopini

eigenvectors do not belong to the Hilbert
space because they cannot be normalized.
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Continuous spectrum

@ In case of a continuous spectrum, the Enrico Iacopini
eigenvectors do not belong to the Hilbert
space because they cannot be normalized.
© However, we accept them as possible
generalized eigenvectors if they have a
finite scalar product with any function
(vector) of the Hilbert space.
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Continuous spectrum

@ In case of a continuous spectrum, the Enrico Iacopini
eigenvectors do not belong to the Hilbert
space because they cannot be normalized.

© However, we accept them as possible
generalized eigenvectors if they have a
finite scalar product with any function
(vector) of the Hilbert space.

© Realizable physical states (normalizable)
can only be lLinear combinations (wave
packets) of these generalized eigenvectors,
corresponding to different eigenvalues.
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Continuous spectrum

@ In case of a continuous spectrum, the Enrico Iacopini
eigenvectors do not belong to the Hilbert
space because they cannot be normalized.

© However, we accept them as possible
generalized eigenvectors if they have a
finite scalar product with any function
(vector) of the Hilbert space.

© Realizable physical states (normalizable)
can only be lLinear combinations (wave
packets) of these generalized eigenvectors,
corresponding to different eigenvalues.

@ This implies that the observable @, strictly
speaking, does not admit determinate
states.
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Continuous spectrum

Enrico Iacopini

@ This is the case, for instance, of the
momentum operator © = —z‘h%.
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Continuous spectrum

Enrico Iacopini

@ This is the case, for instance, of the
momentum operator © = —z‘h%.

@ An eigenfunction of p for the eigenvalue p
should satisfy the equation
a
Y i
ax

DYp(x) = pYp(T) =

= Yp(z) = Ae*/h

= PYp

Enrico Iacopini QUANTUM MECHANICS Lecture 19 November 13, 2019 15 / 22



Continuous spectrum

Enrico Iacopini
@ This is the case, for instance, of the
momentum operator p = —if-L.

@ An eigenfunction of p for the eigenvalue p
should satisfy the equation

—in LY
adx
= Yp(z) = AeP®/h

DYp(x) = pYp(T) =

= PYp

© These eigenfunctions are not square
integrable, which means that the operator
has not eigenvectors in the Hilbert space.
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Continuous spectrum

Enrico Iacopini

@ This implies that we cannot realize
physical states with a perfectly definite
momentum !
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Continuous spectrum

Enrico Iacopini

© This implies that we cannot realize
physical states with a perfectly definite
momentum !

@ However, we accept these functions as
generalized eigenvectors because, although
they cannot be normalized, they have a finite
scalar product with any square-integrable
function ¥ (Dirac condition),

/d:n W*(x) Yp(x) = A/d,a: W*(z) e™*h = c(p) € C
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Normalization

@ Coming to the normalization of these Enrico Tacopini
functions, let's start by remembering that

/d,a: e'% = 27 6(x)
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Normalization

@ Coming to the normalization of these Enrico Iacopini
functions, Let’'s start by remembering that

/da; e’ = 27 6(x)

@ therefore, if we define the normalization
constant of ¥y in such a way that

1 ,
wn(@) = o e™

the momentum generalized eigenfunctions
satisfy the Dirac orthonormality condition

1 .
/da: Yy () Ye(T) = m/dm etx(@—n)/h —

1 .
= — | dyeWl@—"P — §5(qg —
o / Y (g —p)
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Continuous spectrum

Enrico Iacopini

Q@ The set {Yp(x); p € R} of these
eigenfunctions form an orthonormal,
dgeneralized complete set.
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Continuous spectrum

Enrico Iacopini

Q@ The set {Yp(x); p € R} of these
eigenfunctions form an orthonormal,
dgeneralized complete set.

@ But, what exactly do we mean with this
sentence 7
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Continuous spectrum

Let us consider a generic normalized wave Enrico Tacopini
function Y (x).

In case of a finite or numerable orthonormal

basis ¥, we already know that

Y(z) =) cnWn(x)

where the complex coefficients ¢, are the scalar
product of the functions ¥, with :

en =< Ynlw > = [ dz v (2) ¥(=)
and one has

1= [dz @) =} leal
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Continuous spectrum

© Let us consider, now, the momentum SUIAED BRI
eigenfunctions ¥Yp(x). We know that they are
orthonormal in the Dirac sense. If, in close

analogy to the numerable case, we define
) =B = <WlY >= [ dzyi(@)Y(@) =

_ 1 —ivz/h
= \/m/da;e Y(x)
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Continuous spectrum

Enrico Iacopini

@ Let us consider, now, the momentum
eigenfunctions ¥p(x). We know that they are
orthonormal in the Dirac sense. If, in close
analogy to the numerable case, we define

c(P) =PP) = < Ypl >= /d:r: Yp(T)Y(T) =

_ 1 —ipz/h
= \/m/da;e Y(x)

@ the Fourier transform theory guarantees that
w@) = [dp e wn(@) = [ a0 B®) wp(@)
1 = [dzlw@P = [ apld@)P
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About the Fourier transform

In fact, the Fourier transform theory states that, Enrico Tacopini
if f(x) is a continuous integrable function, then

we can define its Fourier transform f(k) as

follows

. 1 .
f/c:—/d:z:fme‘m
(k) T ()
and the inverse Fourier transform of f(k)

1 £ ikx
—m/a/c Flk)e

gives back the original function f(x)
1@ = —— [ ak F(k) e
V2T
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Continuous spectrum

It is easy, now, to verify that 9(p) is simply e Fsesit
proportional to the Fourier transform (k) of
the w.f. ¥ (x), evaluated in k = p/h: in fact

7 — 1 —ivz/h —
Y(p) = \/m/dwe Y(z)

1 /v
- 7903
VE \h
and, because of the inverse Fourier transform
theorem, we have indeed that

/d’p P(p) Yp(z) = /a'p\/iﬁ »@(%) ﬁ oiPT/h

= \/%_W/% zﬁ(%) e \/LQ_W/a/m,D(/c)e““C =
= Y(x)
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