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Exercise

The state of a particle in a harmonic potential is
described, at t = 0, by the wave function

¯(x; 0) = A [ 0(x)` 2i  1(x) + 2 2(x)]

where the  n(x) are the normalized solutions of
the time independent Schrödinger equation for
the energies En = (n+ 1=2)ℏ!.
Determine

the normalization constant A;
the time dependent wave function ¯(x; t);
the expectation value < H > of the total
energy on ¯(x; t);
the probability P (t) to obtain the value E2
and E3 as a result of an energy measurement
on the state described by ¯(x; t).
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Solution

Normalization

We have

1 =

Z

dx¯˜(x; 0)¯(x; 0) =

= A2
Z

dx ( ˜0 + 2i 
˜
1 + 2 

˜
2)( 0 ` 2i 1 + 2 2)

The orthonormality of the  n implies that
Z

dx ˜n(x) m(x) = ‹nm

therefore, for the normalization condition, we
obtain

1 = A2(1 + 4 + 4) ) A =
1

3
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Solution

Time dependence

¯(x; t) = A
h

 0(x)e
`i!t=2 ` 2i 1(x)e`3i!t=2+

+2 2(x)e
`5i!t=2i =

=
1

3
e`i!t=2

h

 0(x)` 2i 1e`i!t+

+2 2(x)e
`2i!ti
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Solution

Energy expectation value

Since < H > is time independent, we can
evaluate it at t = 0. We have

< H > =

Z

dx¯˜(x; 0)H¯(x; 0) =

= A2
Z

dx [ ˜0 + 2i 
˜
1 + 2 

˜
2] ´

´ [E0 0 ` 2iE1 1 + 2E2 2] =

=
1

9
(E0 + 4E1 + 4E2) =

=
ℏ!
18
(1 + 3 ´ 4 + 5 ´ 4) = 33

18
ℏ! = 11

6
ℏ!

where we have used again the  n orthonormality
properties.
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Solution

Probability of obtaining En

This probability is given by

Pn = jcnj2

where

cn =

Z

dx n(x)
˜¯(x; 0)

In our case we have

c2 =
2

3
) P1 =

4

9
c3 = 0 ) P2 = 0

§§§§§§§
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Finite potential barrier

1 Let us come, now, to the argument of the
lecture of today.

2 We have studied the finite square well.
It is , now, interesting to consider the similar
problem of the square potential barrier.

3 In this case, the potential is the following

V (x) = 0 if jxj > a

V (x) = +V0 if jxj » a

with V0 > 0.

4 Similarly to what happens for the free
particle, it is easy to convince ourselves that
there are no stationary solutions if E < 0.
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Finite potential barrier

1 If E > 0 the stationary solutions represent
only scattering states.

2 If E > V0, we have again

x < `a :  (x) = Aeikx + B e`ikx

jxj » a :  (x) = C eirx +D e`irx

x > a :  (x) = F eikx + G e`ikx

where, now, k ”
p
2mE
ℏ and r ”

p
2m(E`V0)
ℏ .

3 The coefficients A; B; C; D; F; G, in terms
of k and r, are formally the same as for the
finite square well, because the algebra that
defines them is exactly the same.
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Finite potential barrier

1 The transmission coefficient T , for a
left-to-right scattering process, is, therefore,
still given by the "old" expression

T =
4r2k2

4r2k2 + (r2 ` k2)2sin2(2ra)

2 which, in terms of the energy E and V0, now
becomes (V0 ! `V0)

T =
4E(E ` V0)

4E(E ` V0) + V 20 sin2(2ra)

where, as already said, now r =
p
2m(E`V0)
ℏ .
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Finite potential barrier

Let us assume,
now, that
0 < E < V0.
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Finite potential barrier

The wave function in the potential region is now
a linear combination of two real exponentials

jxj » a :  (x) = C e`r̂x +D er̂x

where r̂ ”
p
2m(V0`E)
ℏ .

Enrico Iacopini QUANTUM MECHANICS Lecture 15 October 23, 2019 11 / 15



QUANTUM
MECHANICS
Lecture 15

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Finite potential barrier

1 We can use directly the algebraic relations
concerning the continuity of  and  

0
,

already established, if we identify

r ! `i r̂ = `i
q

2m(V0 ` E)
ℏ

2 which implies the substitutions

i sin(2ra) ! sh(2r̂a)

cos(2ra) ! ch(2r̂a)
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Finite potential barrier

1 For a left-to-right scattering, now we have

F=Ae`ika
`2i kr̂

`2i kr̂ ch(2r̂a)` (`r̂2 + k2)sh(2r̂a)
=

=Ae`ika
2 kr̂

2 kr̂ ch(2r̂a)` i(k2 ` r̂2)sh(2r̂a)

2 and, therefore, the transmission coefficient is
given by

T =
˛

˛

˛

˛

˛

F

A

˛

˛

˛

˛

˛

2

=
4r̂2k2

4r̂2k2ch2(2r̂a) + (k2 ` r̂2)2sh2(2r̂a)

Enrico Iacopini QUANTUM MECHANICS Lecture 15 October 23, 2019 13 / 15



QUANTUM
MECHANICS
Lecture 15

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Finite potential barrier

1 For a left-to-right scattering, now we have

F=Ae`ika
`2i kr̂

`2i kr̂ ch(2r̂a)` (`r̂2 + k2)sh(2r̂a)
=

=Ae`ika
2 kr̂

2 kr̂ ch(2r̂a)` i(k2 ` r̂2)sh(2r̂a)

2 and, therefore, the transmission coefficient is
given by

T =
˛

˛

˛

˛

˛

F

A

˛

˛

˛

˛

˛

2

=
4r̂2k2

4r̂2k2ch2(2r̂a) + (k2 ` r̂2)2sh2(2r̂a)

Enrico Iacopini QUANTUM MECHANICS Lecture 15 October 23, 2019 13 / 15



QUANTUM
MECHANICS
Lecture 15

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Finite potential barrier

Since ch2x` sh2x = 1, we have

T =
˛

˛

˛

˛

˛

F

A

˛

˛

˛

˛

˛

2

=

=
4r̂2k2

4r̂2k2[1 + sh2(2r̂a)] + (k2 ` r̂2)2sh2(2r̂a)
=

=
4r̂2k2

4r̂2k2 + (k2 + r̂2)2sh2(2r̂a)
=

=
4E(V0 ` E)

4E(V0 ` E) + V 20 sh2(2r̂a)

which shows that, also when the energy E is
smaller than the potential V0, there is a
non-zero transmission from the barrier:
it is the so-called tunnel effect.

Enrico Iacopini QUANTUM MECHANICS Lecture 15 October 23, 2019 14 / 15



QUANTUM
MECHANICS
Lecture 15

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Finite potential barrier

The transmission shown
in the picture refers to
an electron which
scatters against a
potential well of depth
V0 = +5eV and width
2a = 0:4nm.

The transmission T is continuous in E = V0 and
it is easily evaluated to be

T (V0) =
1

1 + 2mV0a2

ℏ2

which is the maximum transmission possible for
the tunnel effect (E » V0).
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