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The Dirac potential well

In the previous lecture, we have seen that, for a
finite square well of depth `V0 (V0 > 0) and
half-width a, the number N of stationary bound
states (E < 0) is given by

N =
R

ı=2
+ 1

where the (adimensional) parameter R is defined
as

R2 =
2mV0

ℏ2
a2
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The Dirac potential well

Clearly, if V0 grows up (with a constant . . . ), R
increases and also the number of bound states
N increases as well.

Moreover, when V = `V0 ! `1, the solutions
for ‰ ” a k become (remember ‰ ` ” graphic)

‰n = n
ı

2
)

) kn =

v

u

u

t

2m(En + V0)

ℏ2
” ‰n

a
=
nı

2a

and their number tends to become infinite.
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The Dirac potential well

1 But is it always true, when V0 grows up, that
also the number N of solutions increases ?
Let us see ...

2 Let us assume that V0 ! +1 with 2aV0 ” S

constant, which means that, in the above
limit, the area S where the energy potential
is different from zero remains constant.

3 In this case

R2 =
2m

ℏ2
V0 a

2 =
2m

ℏ2
V0

 

S

2V0

!2

=
mS2

2ℏ2V0
! 0
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The Dirac potential well

1 But, from what we have seen in the previous
lecture, when R < ı=2 there is
one and only one stationary solution
with negative energy.

2 As a consequence, in the above limit, only
the first (even) bound state will survive and
we will have

 (x) = ¸e`rjxj

where r =
r

`2mE
ℏ2 ” ”

a
.
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The Dirac potential well

As a matter of fact, when R! 0, also ‰ and ”
will necessarily tend to zero (R2 = ‰2 + ”2:::);
therefore the equation characterizing the only
possible (ground) state of the system is such that

” = ‰ tg‰ ) ar = ak tg(ak) ı (ak)2

) r = a k2 =

 

S

2V0

!

2m

ℏ2
(V0 + E)
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The Dirac potential well

1 But

r =

 

S

2V0

!

2m

ℏ2
(V0 + E) =

mS

V0ℏ2
(V0 + E)

means
v

u

u

t

`2mE
ℏ2

=
mS

ℏ2

 

1 +
E

V0

!

)
q

`E=
s

m

2

S

ℏ

 

1 +
E

V0

!

2 and squaring, we get

`E = mS2

2ℏ2

 

1 +
E

V0

!2

3 which, in the V0 ! +1 limit, for the unique
possible bound stationary state, says that

E = `mS2

2ℏ2
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The Dirac potential well

Concerning the w.f.,
from E = `mS2

2ℏ2 , we
obtain

r ”
v

u

u

t

`2mE
ℏ2

=

=

v

u

u

t

2m

ℏ2
mS2

2ℏ2
=
mS

ℏ2

and, in conclusion, we have

 (x) =
p
r e`rjxj

1 But, why  0 has become discontinuous at
x = 0 ?
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The Dirac potential well

The reason is that, if
V0 !1; a! 0 with
2aV0 = S constant,
we are in presence of a
potential energy with a
discontinuity in x = 0
which is infinite !

In this case, only  remains continuous.

1 The limit condition considered above is very
interesting because it allows us to introduce
the generalized function ‹(x), named Dirac
delta function.
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The Dirac function

The fundamental characteristic of the
Dirac-delta function is that

‹(x` x0) = 0 for x 6= x0
Z

dx ‹(x` x0) = 1

and therefore, for any function f(x) continuous
in x = x0, we have

Z

dx ‹(x` x0) f(x) =
Z

dx ‹(x` x0) f(x0) =

= f(x0)

Z

dx ‹(x` x0) = f(x0)
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The Dirac function

The limit case studied above corresponds to a
potential V (x) = `S ´ ‹(x)
(the potential was centered at x = 0, therefore,
in this case we have x0 = 0 . . . ).
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The Dirac function

1 Strictly speaking, the ‹-function is not a
function in the usual sense, because no
function can be different from zero only in
one point and have a non-null integral.

2 We arrived to this generalized function,
considering what happens to a finite square
energy potential centered in x = 0,
when its width a! 0 but the integral

Z

dx V (x)

remains constant.

Enrico Iacopini QUANTUM MECHANICS Lecture 13 October 15, 2019 12 / 18



QUANTUM
MECHANICS
Lecture 13

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Dirac function

1 Strictly speaking, the ‹-function is not a
function in the usual sense, because no
function can be different from zero only in
one point and have a non-null integral.

2 We arrived to this generalized function,
considering what happens to a finite square
energy potential centered in x = 0,
when its width a! 0 but the integral

Z

dx V (x)

remains constant.

Enrico Iacopini QUANTUM MECHANICS Lecture 13 October 15, 2019 12 / 18



QUANTUM
MECHANICS
Lecture 13

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Dirac function

1 A better way to study the properties of the
Dirac function is to consider, for instance,
this generalized function as the limit for
ff ! 0 of the following family of gaussians

G(x;ff) ” 1

ff
p
2ı

e
` (x`x0)

2

2ff2

2 For a ff becoming smaller and smaller, these
functions become narrower and narrower
around x = x0, remaining normalized

8ff > 0 :
Z

dxG(x;ff) = 1

so, we can assume that

lim
ff!0

G(x;ff) ” ‹(x` x0)
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The Dirac function

1 An important property of the ‹-function has
to do with the integral of a pure exponential.
It turns out, in fact, that

8” 2 < :
Z

dx ei”x = 2ı ‹(”)

2 Again, strictly speaking, the above integral
does not exist, but ...

3 let us consider the following family of
functions

Fa(x) ” ei”x e`a
2x2 = e[`a

2x2+i”x]

and their integrals

Ia(”) ”
Z

dxFa(x) =

Z

dx e[`a
2x2+i”x]
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The Dirac function

1 Since

`a2x2 + i” x = `
"

ax` i”

2a

#2

`
 

”

2a

!2

2 we have

Ia(”) ”
Z

dxFa(x) =

Z

dx e

"

`a2x2+i”x

#

=

= e
`

 

”
2a

!2

Z

dy

a
e
`

"

y` i”
2a

#2

= e
`

 

”
2a

!2

p
ı

a

where we have used the identity
Z

dy e`(y+¸)
2
=

Z

dy e`y
2
=
p
ı
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The Dirac function

1 Since

`a2x2 + i” x = `
"

ax` i”

2a

#2

`
 

”

2a

!2

2 we have

Ia(”) ”
Z

dxFa(x) =

Z

dx e

"

`a2x2+i”x

#

=

= e
`

 

”
2a

!2

Z

dy

a
e
`

"

y` i”
2a

#2

= e
`

 

”
2a

!2

p
ı

a

where we have used the identity
Z

dy e`(y+¸)
2
=

Z

dy e`y
2
=
p
ı
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The Dirac function

The functions Ia(”) are gaussians centered at
zero and normalized to 2ı.
In fact

Z

d” Ia(”) =

p
ı

a

Z

d” e
`

 

”
2a

!2

=

=

p
ı

a
2a

Z

d‰ e`‰
2
= 2
p
ı
p
ı = 2ı
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The Dirac function

Clearly, the gaussians Ia(”) become narrower and
narrower around ” = 0 when a! 0.
In the same limit, Fa(x) ” ei” xe`a

2x2 ! ei” x;
therefore we can conclude that

lim
a!0

Z

dx ei” xe`a
2x2 ” lim

a!0
Ia(”) ”

” lim
a!0

p
ı

a
e
`

 

”
2a

!2

= 2ı ‹(”)

where the coefficient 2ı comes from the integral
of the functions Ia(”).
In conclusion

lim
a!0

Z

dx ei” xe`a
2x2 =

Z

dx ei” x = 2ı ‹(”)
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Exercise N.5

Exercise

Evaluate the following integrals involving the
Dirac delta function

a)

Z 1

`3
dx (x4 + 4x2 ` 2x+ 1) ´ ‹(x)

b)

Z 1

0
dx [cos(4x) ` 2] ´ ‹(x+ ı)

c)

Z 1

`1
dx e`x ´ ‹(x` 2)

d)

Z +1

`1
dx e`x`3 ´ ‹(x+ 2)
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