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Bound and scattering states

Until now, we have seen two different kinds of
wave functions, describing stationary states
(i.e. solutions of the time-independent
Schrödinger equation):

1 normalizable solutions, labeled with a
discrete index n (infinite square well,
harmonic oscillator);

2 non-normalizable solutions, labeled by a
continuous variable (free particle).
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Bound and scattering states

1 In both cases, however, the general
(normalizable !) solution of the
time-dependent Schrödinger equation is
a linear combination of stationary states:

a sum (over n) in the first case,
an integral (over k) in the second case.

2 But, which is the reason of these two
different kinds of solutions ?
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Bound and scattering states

1 Also in Classical Mechanics, a one
dimensional time independent potential V (x)
can give rise to two different kinds of motion:

a bounded trajectory, when
limx!˚1 V (x) > E: in this case, the particle
bounces back and forth between the turning
points x̂1;2 for which V (x̂) = E;
a trajectory extenting up to infinity, if
E > V (˚1): in this case the particle
undergo a scattering process.

2 The two kinds of solutions of the time
independent Schrödinger equation that
we have found, correspond precisely to
these two situations.
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Bound and scattering states

1 Usually, the potential energy is defined in
such a way that it goes to zero at ˚1.
In this case, the solutions of the time
independent Schrödinger equation describe

E < 0: bound states (normalizable);
E > 0: scattering states (non-normalizable,
but with j j2 limited:::).

2 For the infinite square well and the harmonic
oscillator, since V (˚1) =1, we can have
only bound states, whereas for the free
particle we can have only scattering states.

3 In general, however, we may have both kind
of solutions.
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The finite square well

Let us assume that

V (x) = 0

for jxj > a

V (x) = `V0
for jxj » a

where V0 is a suitable
positive real quantity.
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The finite square well

It is easy to convince ourselves that there are no
stationary solutions if E < `V0. In fact

1 from the mathematical point of view,
it can be shown that it is impossible to fulfill
the continuity conditions for  and  

0
,

without having the divergence of j j2
at +1 or at `1;

2 from the physical point of view,
the kinetic energy would be negative
everywhere (which seems to much also in
QM ...).
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The finite square well

1 Let us start by looking for bound states.

2 Let us assume that `V0 < E < 0.

3 Classically, in this case, the particle would
bounce back and forth between ˚a.

4 In QM, the time-independent Schrödinger
equation for jxj » a reads

` ℏ
2

2m

d2 

dx2
` V0 = E  

) ℏ2

2m

d2 

dx2
= `(E + V0) 

where, by hypothesis, E + V0 > 0.

Enrico Iacopini QUANTUM MECHANICS Lecture 12 October 9, 2019 8 / 20



QUANTUM
MECHANICS
Lecture 12

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The finite square well

1 Let us start by looking for bound states.

2 Let us assume that `V0 < E < 0.

3 Classically, in this case, the particle would
bounce back and forth between ˚a.

4 In QM, the time-independent Schrödinger
equation for jxj » a reads

` ℏ
2

2m

d2 

dx2
` V0 = E  

) ℏ2

2m

d2 

dx2
= `(E + V0) 

where, by hypothesis, E + V0 > 0.

Enrico Iacopini QUANTUM MECHANICS Lecture 12 October 9, 2019 8 / 20



QUANTUM
MECHANICS
Lecture 12

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The finite square well

1 Let us start by looking for bound states.

2 Let us assume that `V0 < E < 0.

3 Classically, in this case, the particle would
bounce back and forth between ˚a.

4 In QM, the time-independent Schrödinger
equation for jxj » a reads

` ℏ
2

2m

d2 

dx2
` V0 = E  

) ℏ2

2m

d2 

dx2
= `(E + V0) 

where, by hypothesis, E + V0 > 0.

Enrico Iacopini QUANTUM MECHANICS Lecture 12 October 9, 2019 8 / 20



QUANTUM
MECHANICS
Lecture 12

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The finite square well

1 Let us start by looking for bound states.

2 Let us assume that `V0 < E < 0.

3 Classically, in this case, the particle would
bounce back and forth between ˚a.

4 In QM, the time-independent Schrödinger
equation for jxj » a reads

` ℏ
2

2m

d2 

dx2
` V0 = E  

) ℏ2

2m

d2 

dx2
= `(E + V0) 

where, by hypothesis, E + V0 > 0.

Enrico Iacopini QUANTUM MECHANICS Lecture 12 October 9, 2019 8 / 20



QUANTUM
MECHANICS
Lecture 12

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The finite square well

1 If we define the following real, positive
quantity

k ”

v

u

u

t

(E + V0)2m

ℏ2

the time-independent Schrödinger equation,
for jxj » a:::, becomes

d2 

dx2
= `k2  

2 and its solutions are the well known
trigonometric functions

 (x) = Asin kx+ B cos kx

with A and B arbitrary constants.
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The finite square well

1 For jxj > a, the time independent
Schrödinger equation reads

` ℏ
2

2m

d2 

dx2
= E  ) d2 

dx2
= `2mE

ℏ2
 

2 Since E < 0 ) `2mEℏ2 ” r2 > 0 and the
solutions are now exponentials

 (x) = ¸e`rx + ˛ erx

with r ”
r

`2mE
ℏ2 > 0 real, and ¸, ˛ arbitrary

complex constants.
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The finite square well

1 Since the discontinuity in the potential at ˚a
is finite (= ˚V0), both  and  

0
must be

continuous functions also in ˚a.

2 Moreover, since the energy potential V (x) is
an even function, we can look for stationary
solutions with definite parity.
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The finite square well

Since j (x)j2 must be square-integrable,

lim
x!˚1

j (x)j2 = 0

we will have
1 even solutions:

x < `a : ¸erx

jxj » a : B cos(kx)

x > a : ¸e`rx

2 odd solutions:

x < `a : `¸erx

jxj » a : Asin(kx)

x > a : ¸e`rx
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The finite square well

1 The continuity of  and  
0
for the even

solutions requires that

 : ¸e`ra = B cos(ka)

 
0
: `r ¸ e`ra = `kB sin(ka)

2 and therefore that

r B cos(ka) = kB sin(ka) ) r = k tg(ka)

3 with

¸ = B era cos(ka)

and B to be determined by the normalization
condition on j (x)j2.
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The finite square well

1 For the odd solutions, the continuity
conditions impose that

 : ¸e`ra = Asin(ka)

 
0
: `r ¸ e`ra = kA cos(ka)

2 and therefore that

`r A sin(ka) = kA cos(ka) ) r = ` k

tg(ka)

3 with

¸ = Aera sin(ka)

and A to be determined by the normalization
condition on j (x)j2.
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The finite square well

1 It is useful, at this point, to define the
following two adimensional variables

‰ ” a k = a

v

u

u

t

2m(E + V0)

ℏ2
> 0

” ” a r = a

v

u

u

t

`2mE
ℏ2

> 0

2 In this way, the continuity conditions become

even : r = k tg(ka) ) ” = ‰ tg‰

¸ = B e” cos‰

odd : r = ` k

tg(ka)
) ” = ` ‰

tg‰

¸ = Ae” sin‰
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The finite square well

Concerning the constants A and B, defined by
the normalization condition on j j2, it can be
shown (see Appendix 3) that they are given by:

A`1 = B`1 =

v

u

u

ta

 

1 +
1

”

!

Enrico Iacopini QUANTUM MECHANICS Lecture 12 October 9, 2019 16 / 20



QUANTUM
MECHANICS
Lecture 12

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The finite square well

The two adimensional variables ‰ and ” are such
that

‰2 + ”2 =
a2

ℏ2
[2m(E + V0)` 2mE] =

=
2mV0

ℏ2
a2 ” R2

therefore, the equations to be solved in order to
find the possible values of E are

‰2 + ”2 = R2

” = ‰ tg‰ or ” = ` ‰

tg‰

and they can be solved only numerically.
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The finite square well

The solutions are
alternatively even
(” = ‰ tg‰) and odd
(” = `‰ ctg‰).
Their total number
does not exceed
N = R

ı=2
+ 1.

1 The above example refers to an electron
(mc2 = 0:511MeV ) in a potential well
depth of V0 = `1 eV and half-width
a = 1nm. Since ℏc = 197Mev ´ fm, the
value of R is R = 5:2 and there are only four
possible bound states ( 5:2

ı=2
+ 1 = 4:31).
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The finite square well

The first three (not-normalized) stationary
solutions ...
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The finite square well

1 Let us remark,now, an important difference
with respect to what we have found for the
infinite square well.

2 The p.d.f. j (x)j2 associated to the
stationary (bound) states is different from
zero also in the region outside the well,
where the total energy is smaller that the
potential energy.

3 This region is forbidden in Classical
Mechanics !
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