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The analitic method

In the previous lecture we have seen that, if we
define

x0 =

v

u

u

t

ℏ
m!

; ‰ =
x

x0
; E = k ℏ!

the time-independent Schrödinger equation for
the harmonic oscillator

` ℏ
2

2m

d2 

dx2
+
1

2
m!2x2  (x) = E  (x)

becomes
d2 (‰)

d‰2
` ‰2 (‰) + 2k (‰) = 0

and, given its asymptotic behaviour, it may be
appropriate to look for solutions of the type

 (‰) = e`
1
2‰
2
ffl(‰)
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The analytic method

We have

d 

d‰
= `‰ e`

1
2‰
2
ffl+ e`

1
2‰
2 dffl

d‰

d2 

d‰2
= `e`

1
2‰
2
ffl+ ‰2 e`

1
2‰
2
ffl` ‰ e`

1
2‰
2 dffl

d‰
`

` ‰ e`
1
2‰
2 dffl

d‰
+ e`

1
2‰
2 d2ffl

d‰2

= e`
1
2‰
2
(‰2 ` 1)ffl` 2 ‰ e`

1
2‰
2 dffl

d‰
+

+ e`
1
2‰
2 d2ffl

d‰2
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The analytic method

1 Therefore, the Schrödinger equation

d2 (‰)

d‰2
` ‰2  (‰) + 2» (‰) = 0

becomes
2

4e`
1
2‰
2
(‰2 ` 1)ffl` 2‰e`

1
2‰
2 dffl

d‰
+ e`

1
2‰
2 d2ffl

d‰2

3

5`

`‰2e`
1
2‰
2
ffl+ 2»e`

1
2‰
2
ffl = 0

2 and, after multiplying by e
1
2‰
2
, we finally

obtain

d2ffl

d‰2
` 2‰dffl

d‰
+ (2»` 1)ffl = 0
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The analytic method

1 The equation

d2ffl

d‰2
` 2‰dffl

d‰
+ (2»` 1)ffl = 0

is the Hermite differential equation.

2 To obtain functions

 (‰) = ffl(‰) e`
1
2‰
2

that can be normalized, we need that
(2»` 1) = 2n with n = 0; 1; 2; 3; ::: and, in
this case, the solutions of the above equation
are the Hermite polynomials ffl(‰) = Hn(‰).
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The analytic method

1 Since we have defined E = »ℏ! and
2»` 1 = 2n ) » = n+ 1

2
we conclude, once again, that the only
possible energy values for the stationary
states of a quantum oscillator are
En = (n+

1
2)ℏ!.

2 The corresponding w.f.  n are

 n = An e
` 12‰

2
Hn (‰)

or, more explicitly

 n(x) = An e
` 12
“

x
x0

”2

Hn

 

x

x0

!

in agreement with the result already
obtained with the algebraic method.
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Conclusion

The normalization constant An can be
determined in the usual way

1 = jAnj2
Z

dxH2n

 

x

x0

!

e
`

 

x
x0

!2

and we obtain again
 

x0 =
r

ℏ
m!

!

 n(x) =

 

m!

ℏı

!

1
4 1
p
2n n!

e`
1
2
m!
ℏ x2 Hn

0

@x

s

m!

ℏ

1

A

for the energies En =
 

n+ 1
2

!

ℏ!.
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Completeness

Similarly to what we have seen for the infinite
potential well, also for the harmonic oscillator it
turns out that the set of the  n solving the
time independent Schrödinger equation is
complete.

This means that every square integrable and
differentiable function f(x) can be written as

f(x) =
X

n

cn  n(x); with cn =

Z

dx  ˜n(x) f(x)
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A remark

1 Let us start by considering the stationary
state of the harmonic oscillator described by
the w.f. ¯n. We know that

< H >= En =

 

n+
1

2

!

ℏ!

2 But, what about the expectation values of
the kinetic and potential energy < T > and
< V >.

3 In Classical Mechanics, their average values
over a full time period are equal.

4 What happens in Q.M. ?
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A remark

1 Let us start by evaluating
< T >= 1

2m
< p̂2 >.

2 We can calculate < p̂2 > using the
definition, but there is a more elegant way to
do it, using the raising/lowering operators !

3 Let us remember that

a˚ =
1

p
2mℏ!

 

m!x̂ˇ ip̂
!

) p̂ = i

v

u

u

t

mℏ!
2

 

a+ ` a`
!

) x̂ =

v

u

u

t

ℏ
2m!

 

a+ + a`

!
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A remark

1 Therefore, we have

p̂2 = `mℏ!
2

 

a+ ` a`
! 

a+ ` a`
!

=

= `mℏ!
2

 

a+a+ ` a+a` ` a`a+ + a`a`
!

2 But, clearly, for any given stationary state  n

< a+a+ >=< a`a` >= 0

and therefore

< p̂2 >=
mℏ!
2

 

< a+a` > + < a`a+ >

!
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A remark

But we have already shown that a+a` n = n n
and a`a+ n = (n+ 1) n, therefore, being  n
normalized, we have

< p̂2 > =
mℏ!
2
(n+ n+ 1) = (2n+ 1)

mℏ!
2

) < T >=
1

2m
< p̂2 >=

ℏ!
4
(2n+ 1) =

=
1

2
(n+

1

2
)ℏ! = 1

2
En
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A remark

1 Since < V >=< H > ` < T >, clearly also
for < V > we have

< V >=
1

2
En =< T >

in agreement with Classical Mechanics.
2 This result holds for stationary states:
in general, as shown in Appendix 1, we have

< T > =
1

2
< H > +A cos(2!t+ ffi)

< V > =
1

2
< H > `A cos(2!t+ ffi)

where A and ffi are suitable real quantities.

§§§§§§§
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A further remark

1 We have seen both in the case of the infinite
square well and of the harmonic oscillator
that the ground stationary state
possesses an energy higher than zero :

for the infinite square well we have seen that

Emin =
ℏ2

2m

 

ı

a

!2

=
1

2m

 

ℏ
a

!2

ı2

for the harmonic oscillator, we have got

Emin =
1

2
ℏ!

2 But in Classical Mechanics these energies
can be as small as we want and also null.
Why it is not so also in Q.M. ?
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can be as small as we want and also null.
Why it is not so also in Q.M. ?
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A further remark

1 The reason is in the uncertainty principle.
2 Let us start by considering the harmonic
oscillator: the energy expectaction value
reads

Ĥ =
p̂2

2m
+
1

2
m!2x̂2

) E ”< Ĥ >=
1

2m
< p̂2 > +

1

2
m!2 < x̂2 >

3 If we consider any stationary state,
< x̂ >=< p̂ >= 0 and this clearly holds also
for the state of minimal energy, therefore

E =
1

2m
ff2p +

1

2
m!2ff2x
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A further remark

1 But, according to the uncertainty principle,

ffxffp –
ℏ
2
) ffp –

ℏ
2

1

ffx

therefore

E – 1

2m

 ℏ
2

!2 1

ff2x
+
1

2
m!2ff2x ” F (ffx)

2 The function F (ffx) has a minimum when
dF
dffx
= 0. The ffx corresponding to the

minimum is the solution of the equation

dF

dffx
=

1

2m

 ℏ
2

!2`2
ff3x
+
1

2
m!2 2ffx = 0)

) m!2ffx =
1

m

 ℏ
2

!2 1

ff3x
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A further remark

1 In other words, the minimum of F (ffx) is
reached when

m!2~ffx =
1

m

 ℏ
2

!2 1

~ff3x
)

) ~ff4x =

 ℏ
2

!2 1

m2!2
=

 ℏ
2m!

!2

)

) ~ff2x =
ℏ
2m!

2 For this value of ~ffx we have

F (~ffx) = Fmin =
1

2m

 ℏ
2

!22m!

ℏ
+
1

2
m!2

ℏ
2m!

=

=
ℏ!
4
+
ℏ!
4
=
ℏ!
2
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A further remark

In conclusion, for the harmonic oscillator,
because of the uncertainty principle,
the expectation value of the energy on any state
must be such that

E =< Ĥ > – F (ffx) – F (~ffx) ” Fmin =
ℏ!
2
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A further remark

1 In the case of the infinite square well, since
the particle must stay between 0 and a, the
worst case (highest value) corresponds to
ff2x =

a2

4
, when the particle is found for half

the cases immediately near 0 and for half the
cases immediately near a.

2 Therefore, because of the uncertainty
principle, we will always have that

ffp –
ℏ
2

1

ffx
– ℏ
2

2

a
=
ℏ
a
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A further remark

1 But the particle energy is constituted only by
the kinetic term, and, since on every
stationary state < p >= 0, we will have

E ”< Ĥ >=
< p̂2

2m
=

ff2p

2m
– 1

2m

 ℏ
a

!2

(1)

which states that the uncertainty principle
forbids again the possibility of E = 0,

2 The energy of the infinite square well ground
state was found to be

E1 =
1

2m

 

ıℏ
a

!2

in agreement with the condition (1).
§§§§§§§
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Exercise

A harmonic oscillator is described, at t = 0, by

the w.f. ¯(x; 0) = A

 

4 0(x) + 3i  1(x)

!

a) find the normalization constant A;

b) determine the p.d.f j (x; t)j2;

c) find < x >, < p > and < E > as functions of
time.
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