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Still about the algebraic method

In the previous lecture, we concluded that the
normalized wave function  0 of the harmonic
oscillator ground state is

 0(x) =

 

m!

ı ℏ

!

1
4

e`
1
2‰
2

where ‰ ” x
x0
, x0 ”

r

ℏ
m!
and the energy

corresponding to  0 is E0 = 1
2
ℏ!.

We have also seen that
 0 is defined by the equation a`  0 = 0;
the w.f.  n of the excited states,
corresponding to the energies
En = (n+

1
2
)ℏ! are / (a+)n  0, where

a˚ ” 1p
2mℏ!

 

m!x̂ˇ ip̂
!

.
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Still about the algebraic method

Before considering the problem of the
normalization of the  n, let us point out an
interesting property of these functions: since

Ĥ n ” ℏ!
 

a+a` +
1

2

!

 n ”

” ℏ!
 

a`a+ `
1

2

!

 n =

= ℏ!
 

n+
1

2

!

 n

then we must have

a+a`  n = n n; a`a+  n = (n+ 1) n
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Still about the algebraic method

Concerning now the  n normalization, let us
start by assuming that  n is normalized and let
us consider the problem of the normalization of
the function a+ n /  n+1. We have
Z

dx(a+ n)
˜ ´ (a+ n) =

=
1

p
2mℏ!

Z

dx f(m!x̂` ip̂) ng˜ ´ (a+ n) =

=
1

p
2mℏ!

Z

dx ˜n ´ f(m!x̂+ ip̂) ´ (a+ n)g =

=

Z

dx ˜n(a`a+ n) = (n+ 1)

Z

dx ˜n n =n+ 1

which implies that the normalization condition
requires that  n+1 =

1p
n+1

a+ n.

Enrico Iacopini QUANTUM MECHANICS Lecture 9 October 1, 2019 4 / 17



QUANTUM
MECHANICS
Lecture 9

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Still about the algebraic method

and this result can be generalized as follows

 n =
1
p
n!
(a+)

n  0 =

=
1
p
n!

 

m!

ıℏ

!

1
4

(a+)
n e`

1
2‰
2
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Still about the algebraic method

To determine the esplicit form of the  n,
let us start by observing that, using the

definitions already established for x0 =
r

ℏ
m!
and

‰ = x
x0
, we have

a+ =
1

p
2mℏ!

 

m! x0 ‰ `
ℏ
x0

d

d‰

!

=

=
1

p
2mℏ!

ℏ
x0

 

m!

ℏ
x20 ‰ `

d

d‰

!

=

=
1
p
2

v

u

u

t

ℏ
m!

1

x0

 

m!

ℏ
x20 ‰ `

d

d‰

!

=

=
1
p
2

 

‰ ` d

d‰

!
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Still about the algebraic method

But
 

‰ ` d
d‰

!n

e`
1
2‰
2
will be, clearly, the product

of a suitable polynomial Pn(‰) of degree n,
times the exponential e`

1
2‰
2
:

 

‰ ` d

d‰

!n

e`
1
2‰
2
= Pn(‰) e

` 12‰
2

with P0 = 1.
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Still about the algebraic method

We have

Pn+1(‰)e
` 12‰

2 ”
 

‰` d

d‰

!n+1

e`
1
2‰
2
=

=

 

‰` d

d‰

!" 

‰` d

d‰

!n

e`
1
2‰
2
#

=

 

‰` d

d‰

!"

Pn(‰)e
` 12‰

2
#

=

=‰ Pn(‰)e
` 12‰

2 ` dPn

d‰
e`

1
2‰
2
+ ‰ Pn(‰)e

` 12‰
2
=

=

 

2‰ Pn(‰)`
dPn

d‰

!

e`
1
2‰
2 )

) Pn+1(‰) = 2‰ Pn(‰)`
dPn

d‰

The above recursion formula, with the initial
condition P0 = 1, defines the so-called
Hermite polynomials Hn(‰) ” Pn(‰).
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Still about the algebraic method

We can, therefore, conclude that the w.f. of the
stationary states of the harmonic oscillator are
given by

 n(‰) =
1
p
n!

 

m!

ıℏ

!

1
4
 

a+

!n

e`
1
2‰
2
=

=
1
p
n!

 

m!

ıℏ

!

1
4
"

1
p
2

 

‰ ` d

d‰

!#n

e`
1
2‰
2
=

=

 

m!

ıℏ

!

1
4 1
p
2n n!

Hn(‰) e
` 12‰

2

where ‰ ” x
x0
, x0 =

r

ℏ
m!
and En = ℏ!

 

n+ 1
2

!

.
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Properties of the Hermite polynomials

Concerning the Hermite polynomials,
they are such that they satisfy

the recursion relation

Hn+1(‰) = 2‰ Hn(‰)`
d

d‰
Hn(‰)

the second-order linear differential equation

d2Hn

d‰2
` 2‰ dHn

d‰
+ 2nHn = 0

the equations
d

d‰
Hn(‰) = 2nHn`1(‰)

Hn(`‰) = (`1)nHn(‰)
Z

d‰ Hn(‰)Hm(‰) e
`‰2 =

p
ı 2n n! ‹nm
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The Hermite polynomials

The first seven Hermite polynomials Hn are the
following

H0 = 1;

H1 = 2‰;

H2 = 4‰2 ` 2;
H3 = 8‰3 ` 12‰;
H4 = 16‰4 ` 48‰2 + 12;
H5 = 32‰5 ` 160‰3 + 120‰;
H6 = 64‰6 ` 480‰4 + 720‰2 ` 120;

:::
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Some wave-function shapes...

Shape of the potential energy V and w.f. for the
stationary states with n = 0; 1; 2; 3.
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P.d.f concerning the first four states

Probability densities for the states with
n = 0; 1; 2; 3.

Enrico Iacopini QUANTUM MECHANICS Lecture 9 October 1, 2019 13 / 17



QUANTUM
MECHANICS
Lecture 9

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The analitic method

Let us see, now, how it works the analitic
method to solve the time-independent
Schrödinger equation for the harmonic oscillator.

1 We have to solve the equation

Ĥ  = ` ℏ
2

2m

d2 

dx2
+
m!2

2
x2  = E  )

) d2 

dx2
` 2m
ℏ2

m!2

2
x2  = `2m

ℏ2
E  

2 If we make use of the already given definition

x0 ”
r

ℏ
m!

and we put E = »ℏ!, we obtain

d2 (x)

dx2
` 1

x20

 

x

x0

!2

 (x) = `2»
x20
 (x) (1)
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The analitic method

and in terms of the previously defined
adimensional variable ‰ ” x

x0
, since

d

dx
=
1

x0

d

d‰
) d2

dx2
=
1

x20

d2

d‰2

the differential equation (1)

d2 (x)

dx2
` 1

x20

 

x

x0

!2

 (x) = `2»
x20
 (x)

multiplied by x20, becomes

d2 (‰)

d‰2
` ‰2  (‰) + 2» (‰) = 0
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The analitic method

1 In the asymptotic region (‰! ˚1), the
term 2» (‰) will be negligible compared
with `‰2 (‰); therefore, in this region the
equation can be approximated with

d2 (‰)

d‰2
` ‰2  (‰) = 0 (2)

2 Let us consider, now, the functions
 = e˚

1
2‰
2
. They are such that
d 

d‰
= ˚‰e˚

1
2‰
2 )

d2 

d‰2
= ˚e˚

1
2‰
2
+ ‰2e˚

1
2‰
2

therefore, in the asymptotic region, where
‰ >> 1, both solve (approximately) eq.(2) ...
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The analitic method

1 However, since we are looking for square
integrable functions, we can accept only
e`

1
2‰
2
, which is an approximate solution of

the asymptotic approximation of the
time` independent Schrödinger equation.

2 It is not a solution of our problem, but it
gives the idea of looking for solutions in
which this function enters as a factor, to
explain the asymptotic trend. For this
reason, we define

 (‰) ” e`
1
2‰
2
ffl(‰)

3 Since e`
1
2‰
2
is non-zero everywhere, the

above definition does not introduce any
limitation in the solution set.
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