Enrico Iacopini

QUANTUM MECHANICS
Lecture 9
The quantum harmonic oscillator

Enrico Iacopini

October 1, 2019

D. J. Griffiths: paragraph 2.3

Enrico Iacopini QUANTUM MECHANICS Lecture 9 October 1, 2019 1/ 17



|
Still about the algebraic method

In the previous lLecture, we concluded that the Enrico Tacopini
normalized wave function 9o of the harmonic
oscillator ground state is

1
where £ = x% To = \/% and the energy
corresponding to Yo is Eo = 2hw.
We have also seen that
@ 7o is defined by the equation a— Yo = O;
@ the w.f. ¥, of the excited states,
corresponding to the energies
En = (n+ 3)Aw are o (a4)™ Yo, where

(mw:f: F 'L'ﬁ) .

Enrico Iacopini QUANTUM MECHANICS Lecture 9 October 1, 2019 2 /17

1
2mhAw

a+ =



|
Still about the algebraic method
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Before considering the problem of the
normalization of the ¢, Let us point out an
interesting property of these functions: since

HYy, = hw <a+a_ + %) Wn
Aw <a,_a,+ - %) Yp =

1
= ﬁw(n—l-E) Yn

then we must have

a+a— Yn = N Yn, a—a4+ Yn =M+ 1) Yn
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Still about the algebraic method

Concerning now the ¥, normalization, Llet us
start by assuming that ¥, is normalized and Let
us consider the problem of the normalization of
the function a4+¥n X Yn41. We have

[ dv(@rwn) - (arwn) =

_ m / 4z {(MwE — 1P) Yn}* - (at1Pn) =
= —Q'rlnﬁ,w /da: Yp - {(MwWZ + iP) - (a+Yn)} =

= [ azvi(a-aiyn) = (n+1) [ dzwivn =n +1

which implies that the normalization condition
requires that n11 = ——

a .
/_n—i—l —|—"/)n
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Still about the algebraic method
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and this result can be generalized as follows

1 n .
Yn = \/—n_!(a+) Yo =

1 muw

= L () et
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Still about the algebraic method

To determine the esplicit form of the ¥, Enrico Tacopini
Let us start by observing that, using the

definitions already established for xg = \/% and

—_ T
£ = zo We have

1
= v2mﬁw<mw$05_$_od_-§>_
_ 1 ﬁ(mw 2£_i>=

VombwTo\ k08T qg
1 A 1 /mw , ay
V2 mw:co<ﬁ$°£_d_£>_

1 a
= 75(“&)
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Still about the algebraic method
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dg
of a suitable polynomial P,(&) of degree n,
times the exponential e~ 2¢:

n
But < — i) e~ 3¢ will be, clearly, the product

<5 B a%)n e™3% = Pa(g) e 3¢

with Py = 1.
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Still about the algebraic method
We have

1g2 d n+1 1es2
Prp1(€)e 3¢ = (5‘a_g> e3¢

(&) -2 (- o)

ag
=¢ Pu(@eH¢ — 2 Remi

_%52 =
aE + £ Pr(€)e
_ _aPn) i
—(2‘5 Pn(€) ag >e =
d:Pn
= Pn+1(&) = 26 Pr(€) — aE

The above recursion formula, with the initial

condition Py = 1, defines the so-called

Hermite polynomials Hp(€) = Pn(£).
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Still about the algebraic method
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We can, therefore, conclude that the w.f. of the
stationary states of the harmonic oscillator are
given by

wn@© = (M) (o) et =
- H”“") aleae)] e -

where £ = £,z = «/% and E, = ﬁw(n—i— %)
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Properties of the Hermite polynomials

Concerning the Hermite polynomials, Enrico Tacopini
they are such that they satisfy
@ the recursion relation

Hng1 (€) = 2€ Hn(€) — d%Hn(g)
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Properties of the Hermite polynomials

Concerning the Hermite polynomials, Enrico Tacopini
they are such that they satisfy
@ the recursion relation

Hins1(€) = 2€ Hn () — iws)

@ the second-order Linear dlfferentlaL equation

= _2
dg? ¢ ag
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Properties of the Hermite polynomials

Concerning the Hermite polynomials, Enrico Tacopini
they are such that they satisfy
@ the recursion relation
a

Hn+1(€) = 2€ Hn (&) — d—EHn(E)
@ the second-order Linear differential equation
d? Hn, dHp,
— 26— +4+2nHyp =20
g2 '3 e + n
@ the equations
a
d_an(E) =21 Hp—1(§)

Hn (=€) = (=1)" Hn (&)
/dg Hn (&) Hm (&) e ¢ = VT2 Nl Snm
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The Hermite polynomials
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The first seven Hermite polynomials Hy are the
following

Ho = 1;

Hi = 2¢;

Hy = 4€%—2;

Hs = 83— 12¢;

Hs = 16&% — 48¢2 + 12;

Hs = 32¢£° —160¢° + 120¢;

Hs = 64£°% — 480¢* 4 720£2 — 120;
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Some wave-function shapes...
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Shape of the potential energy V and w.f. for the
stationary states with n =0, 1, 2, 3.
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P.d.f concerning the first four states

Probability densities for the states with

n=20,1,2,3.
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The analitic method

Let us see, now, how it works the analitic Enrico Tacopini
method to solve the time-independent
Schrodinger equation for the harmonic oscillator.

@ We have to solve the equation
R? d?2¢y  mw?

Ay =— Y = EY =
¥ 2m dx? + 2 ¥ ¥
a’y  2mmw? 2m
= — 2y =—"2FE
42 Rz 2 TVTE TR EVY
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The analitic method

Let us see, now, how it works the analitic Enrico Tacopini
method to solve the time-independent
Schrodinger equation for the harmonic oscillator.

@ We have to solve the equation
A2 d?y  muw?

Ay =— Y = E
v 2m dx? + 2 v v =
a’y  2mmw? 2m
— 2y=-—""F
Tz R 2 T VTR EV

@ If we make use of the already given definition
T = w/% and we put E = Kk Aw, we obtain

a2y (x) 1 (1

To

2 2K
i~ () Y@ =-Tv@

>
Ty
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The analitic method

and in terms of the previously defined

adimensional variable £ = xlo since
4 _14d @ _ 1 a2
dz = xodé dz? 2 dg?

the differential equation (1)

a2y (x) 1 (2

adz2 x5 \To

multiplied by z3, becomes

PYE) o
—_— W — 2K =0
e —EVE 269
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The analitic method

© In the asymptotic region (¢ — +00), the Enrico Iacopini
term 2kY¥(€) will be negligible compared
with —&21(€); therefore, in this region the
equation can be approximated with

a’p(€)

e —EVEO =0 ()
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N
The analitic method

© In the asymptotic region (¢ — +00), the Enrico Iacopini
term 2kY¥(€) will be negligible compared
with —&21(€); therefore, in this region the
equation can be approximated with

a2 (§)
ag?
@ Let us clopsider, now, the functions
W = e*3€°. They are such that

— &y =0 (2)

3 +ce =
2 1g2 142

therefore, in the asymptotic region, where
& >> 1, both solve (approximately) eq.(2) ...

Enrico Iacopini QUANTUM MECHANICS Lecture 9 October 1, 2019 16 / 17



The analitic method

@ However, since we are Looking for square [SED eIl
int§gzrabLe functions, we can accept only
e~2¢", which is an approximate solution of
the asymptotic approximation of the
time — independent Schrodinger equation.
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The analitic method

@ However, since we are Looking for square Etucollacopiny
int§92rabLe functions, we can accept only
e~ 2%, which is an approximate solution of
the asymptotic approximation of the
time — independent Schrodinger equation.
@ It is not a solution of our problem, but it
gives the idea of Looking for solutions in
which this function enters as a factor, to
explain the asymptotic trend. For this
reason, we define

w(&) = e3¢ x(8)
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The analitic method

@ However, since we are Looking for square Etucollacopiny
int§92rabLe functions, we can accept only
e~ 2%, which is an approximate solution of
the asymptotic approximation of the
time — independent Schrodinger equation.
@ It is not a solution of our problem, but it
gives the idea of Looking for solutions in
which this function enters as a factor, to
explain the asymptotic trend. For this
reason, we define

w(&) = e3¢ x(8)

© Since e_%52 is non-zero everywhere, the
above definition does not introduce any
Limitation in the solution set.
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