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The harmonic oscillator

Quantum HarmoniC OSCiLLatOI’ Enrico Iacopini

© Let us start from the classical equation of
the harmonic oscillator.
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The harmonic oscillator

Quantum HarmoniC OSCiLLatOI’ Enrico Iacopini

© Let us start from the classical equation of
the harmonic oscillator.

@ As it is well known, its equation of motion
reads

mr = F(x) = —kz

and this equation rules many physical
systems, such as the pendulum, a mass
attached to a spring, the small oscillations
around a stable equilibrium position, etc ...
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The harmonic oscillator

Quantum HarmoniC OSCiLLatOI’ Enrico Iacopini

© Let us start from the classical equation of
the harmonic oscillator.

@ As it is well known, its equation of motion
reads

mr = F(x) = —kz

and this equation rules many physical
systems, such as the pendulum, a mass
attached to a spring, the small oscillations
around a stable equilibrium position, etc ...
© The restoring force admits a potential which
is given by V(z) = 3k z2 <=> F(z) = —%).
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The harmonic oscillator

Enrico Iacopini
If we define

_ [k
w = —_—
m

the solutions of the harmonic oscillator equation
are

z(t) = Asinwt + B coswt

where A and B are integration constants, to be
determined from the initial conditions.
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The QM harmonic oscillator

Enrico Iacopini

@ The hamiltonian of the harmonic oscillator is

D2 1, 02 mw?
H=— -kt = — T
2m+2 2m+ 2

and, therefore, the time — indepvendent
Schrodinger equation is the following
R2 d?2¢ = muw?

2
T = E
2mda:2+ 2 ¥ ¥
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@ The hamiltonian of the harmonic oscillator is

D2 1, 02 mw?
H=— -kt = — T
2m+2 2m+ 2

and, therefore, the time — indepvendent
Schrodinger equation is the following
R2 d?2¢ = muw?

2
T = E
2mda:2+ 2 ¥ ¥

@ There are two ways to solve it:
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The QM harmonic oscillator

Enrico Iacopini

@ The hamiltonian of the harmonic oscillator is

02 1 ) 02 mw?
H=— kTt = —
2m+2 2m+ 2

and, therefore, the time — indepvendent

Schrodinger equation is the following

h? d?y  mw?
— x =E
2m dx? T 2 v v

@ There are two ways to solve it:

© the algebraic method
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The QM harmonic oscillator

Enrico Iacopini

@ The hamiltonian of the harmonic oscillator is

D2 1, 02 mw?
H=— -kt = — T
2m+2 2m+ 2

and, therefore, the time — indepvendent
Schrodinger equation is the following
R2 d?2¢ = muw?

2
T = E
2mda:2+ 2 ¥ ¥

@ There are two ways to solve it:
© the algebraic method

© the analitic method
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|
The algebraic method

Let us start with the algebraic method. Etucollacopiny
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|
The algebraic method

Let us start with the algebraic method. Etucollacopiny

@ The equation to be solved is

R D2 1
AYy=|——4+-muw’z?|lv=Evy
2m 2

where H, p and Z are the hamiltonian, the
momentum and the position operators.
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|
The algebraic method

Let us start with the algebraic method. Enrico Tacopin

@ The equation to be solved is

where H, p and Z are the hamiltonian, the
momentum and the position operators.

@ Let us start by rewriting the hamiltonian H
as follows

Flzﬁ [@Q i (mwf:)Q] — hw {m [ﬁ2 + (mw:’z‘;)z]}
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|
The algebraic method

The quadratic structure of A suggests to write SuTfie B
the adimensional term in brackets as follows
1

2mhw [752 + (mw) 2} -

J— 1 2 s A -
= [—Qmﬁw (mwz zp)M

= d4 - ad—

(mwz +19)| =

1
vVomhw
where we have defined the two operators a+ as

follows

aiE;(mwX:Fif))

V2mhw
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|
The algebraic method

o But, is it correct ? Enrico Iacopini
Let us see ...
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The algebraic method

Q@ But, is it correct 7 Enrico Tacopini
Let us see ...
@ We have
atr-a_ = (MwZ —19) (MW +19) =

= (mwz)? 4+ imw 2P — imw PT + (9)?
but imwZp — iMmw PT = t1MmMw (TP — PT)
is equal to zero or not 7
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The algebraic method

Q@ But, is it correct 7 Enrico Tacopini
Let us see ...
@ We have
atr-a_ = (MwZ —19) (MW +19) =

= (mwz)? 4+ imw 2P — imw PT + (9)?
but imwZp — iMmw PT = t1MmMw (TP — PT)
is equal to zero or not 7

© In case of numerical quantities, the answer,
of course, would be yes, but for operators ?
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|
The algebraic method

© But, is it correct ? Enrico Tacopini
Let us see ...
© We have
at -a— = (MwZ —1P) (MwZ + 19) =

= (mwz)? 4+ imw 2P — imw DT + (9)?
but imw P — iMmw PT = iMmw (TP — PT)
is equal to zero or not 7

© In case of numerical quantities, the answer,
of course, would be yes, but for operators 7

© Here, in fact, we have to do with the
commutator of the two operators £ and P:

TP — PT = [T, 7]
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The algebraic method

Enrico Iacopini
To verify if the commutator is null or not, we
have to see which is the result of its application
to a generic function f(x). We have

[, f = (@Zp—p2)f =2pf —pxf =
a0\ .
= a:< z/i&n) p(zf) =
T S D
= —ihzx v + zﬁam(z f) =
= _ihxg+iﬁf+iﬁ,$g:7;ﬁ,f:>
ox ox

= [X,P] =ih
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|
The algebraic method

Enrico Iacopini

© This means that

a_ay = QT:hw{(mw:f:Y + (9)? — imwlz, 'ﬁ]} =

= QT;ﬁw{(mwi)Q + (9)? + mﬁw} =

= hwa_ay = {(mw:f:)2 + (ﬁ)Q} + ﬁ,?w

2m
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|
The algebraic method

Enrico Iacopini

@ This means that

a_ay = Qﬂjhw{(mwiﬁ + (p)? — imwlz, 'ﬁ]} =

= QT;ﬁw{(mw:ﬁ)Q + (9)? + mﬁw} =

= hwa_at = ﬁ{(mw:ﬁ)Q + (ﬁ)Q} + ﬁ,?w

@ and therefore
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|
The algebraic method

©@ The non-null commutator between Z and P SuTfie B
implies that also the two operators a4 and
a_ do not commute.
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|
The algebraic method

Enrico Iacopini

@ The non-null commutator between Z and P
implies that also the two operators a4 and
a_- do not commute.

@ In fact it turns out that

2,,;,.1&} {(mw2)? + (p)* — mhw}

whereas we have already seen that

af a_ =

d_ad4 =

th {(mwz)> 4+ (9)* + mhw}
and therefore
[a—,a4] =1
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|
The algebraic method

@ Let us apply these results to our problem: Enrico Tacopini
the solution of the time-independent
Schrodinger equation

Ay =Evy
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The algebraic method

Enrico Iacopini

© Let us apply these results to our problem:
the solution of the time-independent
Schrodinger equation
Ay =Evy
@ Let us start by observing that, from what we

have seen, the hamiltonian operator A
can be written in both the following ways

_ 1
H = hw <a_a+ — 5)
H = hw <a+a_ + %)

Enrico Iacopini QUANTUM MECHANICS Lecture 8 September 25, 2019 11 / 17



|
The algebraic method

Enrico Iacopini

Let 9 be a solution of the time-independent
Schrodinger equation, corresponding to the
energy E, and Llet us define the new function
a+Y. We have

Hary = hw <a+a_ + é) aty =
= hw <a+a_a+ + la,+> Y =
= ﬁw{a+<a a+——>—|—a+}w:

= { +/'zw<a a+—>+ﬁwa+}w=
= ay AY + hwaty = (E + Aw)aty
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|
The algebraic method

Enrico Iacopini

©@ This means that the function a4+ solves the
Schrodinger equation for the energy E + Aw.
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|
The algebraic method

Enrico Iacopini

©@ This means that the function a4+ solves the
Schrodinger equation for the energy E + Aw.

@ In the same way, we can show that

Ha_vy = (E — hw)a_1
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|
The algebraic method

Enrico Iacopini

©@ This means that the function a4+ solves the
Schrodinger equation for the energy E + Aw.

@ In the same way, we can show that
Ha_vy = (E — hw)a_1

© Therefore, starting from a solution for the
energy E, we can apparently build an
infinite chain of solutions, corresponding to
the energies E &+ n Aw.
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The algebraic method

Enrico Iacopini

©@ This means that the function a4+ solves the
Schrodinger equation for the energy E + Aw.

@ In the same way, we can show that
Ha_vy = (E — hw)a_1

© Therefore, starting from a solution for the
energy E, we can apparently build an
infinite chain of solutions, corresponding to
the energies E &+ n Aw.

© But is the chain really infinite on both
sides 7
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The algebraic method

Let us observe that Enrico Iacopini
gL 5 4 mw2 22
2m

and the expectation values of $2 and £2 can only
be positive quantities, in fact, no matter what W
is, we have

<P >=[dzw@ V) = [dz (W) (BY) >0
<2 > = [dz v (@ W) = [ dz(@w)"@v) >0
Therefore, also < H > must be strictly positive

and, as a consequence, no stationary state can
exist corresponding to negative energies.
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|
The algebraic method

© Let us reconsider, then, the way in which we Enrico Tacopini
have established in general that

Ha_vy = (E — hw)a_1
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|
The algebraic method

@ Let us reconsider, then, the way in which we Enrico Iacopini
have established in general that
Ha_vy = (E — hw)a_1
@ In drawing this conclusion, we have implicitly

assumed that the function a—% is not the
null function !
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© Let us reconsider, then, the way in which we Enrico Iacopini
have established in general that
Ha_vy = (E — hw)a_1
@ In drawing this conclusion, we have implicitly
assumed that the function a—% is not the
null function !
@ In fact, if a_yY = 0 the chain stops at E
and the wave function 9o for which

a—1Po = O represents the state with the
Lowest possible energy.
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The algebraic method

© Let us reconsider, then, the way in which we Enrico Tacopini
have established in general that

Ha_vy = (E — hw)a_1

@ In drawing this conclusion, we have implicitly
assumed that the function a—% is not the
null function !

@ In fact, if a_yY = 0 the chain stops at E
and the wave function 9o for which
a—1Po = O represents the state with the
Lowest possible energy.

@ On this state, we have

. 1
Ay = hw <a+a— + 5) Yo = ﬁ?w'WO =

1
= Eo = Eﬁw
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The algebraic method

Let us determine the function g corresponding

to the ground state of the harmonic oscillator:
we have

Enrico Iacopini

a— Yo =0=>
(mwZ 4+ 1p) Yo = 0 =

2mhw
ﬁOzmwxwo—l—ﬁ,dwo ﬁdw0=—mwxwo
dx ax h

2
2 _1(x 1
X = Ape 2("0) = Ao e_§£2

mw

= Yo(x)=Ag e 2
where we have defined

h T
To =+ — and £ —
mw To
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The algebraic method

Enrico Iacopini

Concerning the 9o normalization, it is easy to
verify that we must have

1 (mw)flt
Ag = = =
To/T mh
_(Mmuw i _§<2fﬂo)2_<mw>i _1g2
1110(93)—<7rﬁ> © ~\7h/) ¢
In fact

1= /dwlwo(m)F = /wo de¢ |Aol? e ¢ =
1

= $0|A0|2\/% = Ag =
CCQ\/%
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