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The wave function normalization

1 From what we have already seen, it should
be clear that the use of a normalized wave
function ~̄ makes easier to draw
conclusions through the statistical
interpretation.

2 In fact, j ~̄ j2 can be interpreted directly as a
probability density function.

3 The probability to find the particle between
a and b at time t̂ is, in fact, simply given by

P (a; b; t̂) =

Z b

a
j ~̄ (x; t̂)j2 dx
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The wave function normalization

1 But a wave function which has been
normalized at t = t̂ will remain normalized
also at any later time or not ?

2 In other terms, the normalization constant A
changes or not as a function of time ?

3 If A would change, then to keep the w.f.
normalized to one, we would need to put
~̄ (x; t) ” 1p

A(t)
¯(x; t)

and this function would not anymore
solve the Schrödinger equation satisfied
by the original wave function ¯(x; t),
because of the presence of the time
dependent factor 1p

A(t)
...
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The Schrödinger equation and the w.f.
normalization

1 The Schrödinger equation has the relevant
property to preserve the normalization.

2 To see this, let us start by observing that

d

dt

Z +1

`1
j¯(x; t)j2 dx =

Z +1

`1

@

@t
j¯(x; t)j2 dx

3 But

@

@t
j¯j2 = @

@t
(¯¯˜) = ¯˜

@¯

@t
+¯

@¯˜

@t
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The Schrödinger equation and the w.f.
normalization

Now, if we multiply the Schrödinger equation

iℏ @
@t
¯(x; t) = ` ℏ

2

2m

@2

@x2
¯(x; t) + V (x; t) ´¯(x; t)

by the quantity `i=ℏ , we obtain

@¯

@t
=

iℏ
2m

@2¯

@x2
` i

ℏ
V ´¯

But, since the energy potential V is a real
function (V = V ˜), taking the complex
conjugate, we have also that

@¯˜

@t
= ` iℏ

2m

@2¯˜

@x2
+
i

ℏ
V ´¯˜
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The Schrödinger equation and the w.f.
normalization

therefore, concerning

@

@t
j¯j2 = ¯˜@¯

@t
+¯

@¯˜

@t

since the two terms proportional to V have
opposite sign and cancel each other, we have

@

@t
j¯j2 = iℏ

2m

2

4¯˜
@2¯

@x2
`¯@

2¯˜

@x2

3

5 =

=
iℏ
2m

@

@x

"

¯˜
@¯

@x
`¯@¯

˜

@x

#
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The Schrödinger equation and the w.f.
normalization

1 which means that

d

dt

Z +1

`1
j¯(x; t)j2 dx = iℏ

2m

"

¯˜
@¯

@x
`¯@¯

˜

@x

#+1

`1

2 but, in the limit x! ˚1 the w.f.
¯(x; t)! 0 (otherwise  could not be
square-integrable ...); therefore

dA(t)

dt
” d

dt

Z +1

`1
j¯(x; t)j2 dx = 0

3 and this general result ensures that
the wave-function normalization
coefficient A is constant in time.
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The probability current

1 Before leaving the argument, let us consider
again the equation

@

@t
j¯j2 = iℏ

2m

@

@x

"

¯˜
@¯

@x
`¯@¯

˜

@x

#

(1)

2 If we define

ȷ(x; t) = j¯(x; t)j2

J(x; t) = ` iℏ
2m

"

¯˜
@¯

@x
`¯@¯

˜

@x

#

3 to the equation (1) we can give the form of a
"continuity" equation

@ȷ

@t
+
@J

@x
= 0
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The probability current

1 If we integrate in the x coordinate, between
a and b, both sides of the continuity
equation, we obtain

Z b

a
dx
@ȷ(x; t)

@t
” d

dt

Z b

a
dx ȷ(x; t) = `

Z b

a
dx
@J(x; t)

@x

) d

dt
P (a; b; t) = J(a; t)` J(b; t)

2 This shows that J(x; t) represents the
probability current associated to the wave
function  (x; t).
In fact, the time derivative of the probability
to find the particle between a and b is the
difference between the flux of the
probability current entering from a, minus
the one exiting from b.
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Consequeces from the statistical
interpretation

1 We have concluded so far that the
Schrödinger equation preserves the wave
function normalization, which, by the way, is
clearly a necessary condition to ensure the
mathematical consistency of the statistical
interpretation.

2 But let us try, now, to better understand the
deep implications coming from the
probabilistic interpretation of the modulus
square of the wave function.
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Still about the wave function

1 Let us assume to dispose of many "copies"
of the same physical state described by the
normalized w.f. ¯(x; t).

2 If we perform a position measurement on
each of the various "copies", we have already
said that, a priori, we will not obtain always
the same result.

3 However, the probabilistic interpretation
allow us to predict the exact average value
of the position, which will be given by

< x(t) >=

Z +1

`1
dx j¯(x; t)j2 ´ x
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the same result.

3 However, the probabilistic interpretation
allow us to predict the exact average value
of the position, which will be given by

< x(t) >=

Z +1

`1
dx j¯(x; t)j2 ´ x
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Still about the wave function

1 In the QM jargon, this quantity

< x(t) >=

Z +1

`1
dx j¯(x; t)j2 ´ x

is called the expectation value of the
observable x at time t.

2 This definition is a bit misleading because it
could suggest that the expectation value is
the most probable value associated to the
p.d.f. j¯j2, whereas it is not ... it is its
mean value !
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Still about the wave function

1 Clearly, we can get the same expectation
value < x(t) > starting from very many
probability densities j¯(x; t)j2 ...

2 One way to measure the narrowness of the
p.d.f. j¯(x; t)j2 is by evaluating the standard
deviation (its square ...)

ff2(t) =

Z +1

`1
dx j¯(x; t)j2

 

x` < x(t) >

!2

3 If the probability distribution is very peaked
at < x(t) >, then ff2 will be quite small,
whereas if the distribution is very broad, ff2

will be large.
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The gaussian case

As an example, consider
the wave functions (with
s and a real values)

¯(x; 0) = Ae
` (x`a)

2

4s2

which are normalized if
A2 = 1

s
p
2ı
.

1 It easy to see that the expectation value is
< x >= a and the standard deviation ff = s.

2 Clearly, if s! 0, the distribution probability
will become narrower and narrower around a,
so that the position uncertainty will be
reduced as much as we want ...

Enrico Iacopini QUANTUM MECHANICS Lecture 3 September 10, 2019 14 / 22



QUANTUM
MECHANICS
Lecture 3

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The gaussian case

As an example, consider
the wave functions (with
s and a real values)

¯(x; 0) = Ae
` (x`a)

2

4s2

which are normalized if
A2 = 1

s
p
2ı
.

1 It easy to see that the expectation value is
< x >= a and the standard deviation ff = s.

2 Clearly, if s! 0, the distribution probability
will become narrower and narrower around a,
so that the position uncertainty will be
reduced as much as we want ...

Enrico Iacopini QUANTUM MECHANICS Lecture 3 September 10, 2019 14 / 22



QUANTUM
MECHANICS
Lecture 3

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The gaussian case

As an example, consider
the wave functions (with
s and a real values)

¯(x; 0) = Ae
` (x`a)

2

4s2

which are normalized if
A2 = 1

s
p
2ı
.

1 It easy to see that the expectation value is
< x >= a and the standard deviation ff = s.

2 Clearly, if s! 0, the distribution probability
will become narrower and narrower around a,
so that the position uncertainty will be
reduced as much as we want ...

Enrico Iacopini QUANTUM MECHANICS Lecture 3 September 10, 2019 14 / 22



QUANTUM
MECHANICS
Lecture 3

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The momentum

1 The time derivative of the position
expectation value

< x(t) > =

Z

dx j¯(x; t)j2 ´ x

gives the expectation value of the particle
velocity

< v(t) >=
d

dt
< x(t) >

2 This comes from an important theorem,
due to Ehrenfest, which states that, in QM,
the expectation values of the physical
quantities do satisfy the equations of
Classical Mechanics.
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The momentum

1 Therefore, according to the Ehrenfest
theorem, the expectation value of the
particle momentum p = mv is given by

< p >= m
d

dt
< x >

or, in other words

< p > = m

Z

x

"

@¯˜

@t
¯+¯˜

@¯

@t

#

dx

2 but from the Schrödinger equation multiplied
by `imℏ , we obtain the two cc equations

m
@¯

@t
=

iℏ
2

@2¯

@x2
` i

ℏ
mV  

m
@¯˜

@t
= `iℏ

2

@2¯˜

@x2
+
i

ℏ
mV ¯˜
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The momentum

Therefore, since the terms proportional to V
cancel out, we obtain

< p > = `iℏ
2

Z

x

2

4

@2¯˜

@x2
¯`¯˜@

2¯

@x2

3

5 dx =

= `iℏ
2

Z

x
@

@x

"

@¯˜

@x
¯`¯˜@¯

@x

#

dx =

=
iℏ
2

Z
"

@¯˜

@x
¯`¯˜@¯

@x

#

dx

where we made use of the integration-by-parts
and we have assumed that ¯! 0 when
x! ˚1. For the same reason, we have

Z

@¯˜

@x
¯ dx = `

Z

¯˜
@¯

@x
dx
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The momentum

1 In conclusion, for the linear momentum we
obtain

< p(t) > =
iℏ
2

Z
"

@¯˜

@x
¯`¯˜@¯

@x

#

dx

= `iℏ
Z

dx ¯˜
 

@

@x
¯

!

2 while, let us remember, for the position we
have obtained

< x(t) >=

Z

dx ¯˜
 

x¯

!
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Linear operators: a first view

The similar structure of these two results leads
us to introduce, now, the concept of
"linear operator" Q,
acting on a generic (wave) function.
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Linear operators: a first view

1 In general, the definition requires that Q is a
linear application that associates, in an
unique way, the function Q(¯) to the
function ¯.

2 The linearity of Q means that, if a and b are
any complex numbers, then

Q (a ´¯1 + b ´¯2) = a ´ Q(¯1) + b ´ Q(¯2)

3 For instance, the multiplication by x,
Q(¯) = x ´ ¯ or the partial derivative with
respect to x, Q(¯) = @

@x
¯ do satisfy the

above definitions and, therefore, they are
linear operators.
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Linear operators: a first view

1 Let us see, again, the expressions of the
position and momentum expectation values

< x(t) > =

Z

dx ¯˜(x; t) x ´¯(x; t)

< p(t) > = `iℏ
Z

dx ¯˜(x; t)
@

@x
¯(x; t)

2 If we assign to the position the operator
Q ” x̂ = x´ and to the momentum the
operator Q ” p̂ = `iℏ @

@x
, then, in both

cases, the expectation value of these
observables can be obtained by evaluating
the integral

< Q(t) >=

Z

dx¯˜(x; t)

 

Q¯(x; t)
!
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Linear operators: a first view

1 But, for a point-like particle,
every mechanical quantity Q can be
expressed in terms of position and linear
momentum.

2 Therefore, it is possible to associate to every
observable Q a QM operator Q in this way

Q(x; p)! Q (x̂; p̂) ” Q
 

x;`iℏ @
@x

!
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