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Why QM ?

1 In the previous lecture we have seen the
reasons why Classical Phyics had to be
rewieved and a new Mechanics was necessary
() QM).

2 We have also said that QM represents a
revolutionary departure from classical
ideas and in many aspects it appears
counterintuitive.

3 Nevertheless, up to now, the QM
predictions have always been found in
perfect agreement with the experiments !
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The Schrödinger equation

1 In Quantum Mechanics, the particle
dynamics is described by the Schrödinger
equation, that, in one dimension, reads

iℏ@¯
@t
= ` ℏ

2

2m

@2¯

@x2
+ V ¯

2 This equation allow to evaluate the time
evolution of the "wave-function"
¯ = ¯(x; t), that describes the physical
state of the system under consideration.
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The wave function

1 The Schrödinger equation is the QM
counterpart of the Newton’s Lex II:

2 given the initial conditions and the force law
(the potential energy V (x) ...), in CM,
Lex II allow us to find the particle position
x = x(t) as a function of time;

3 similarly, in QM, the Schrödinger equation
allow us to determine the wave function
¯(x; t) at any time.

4 However, everybody undestands the meaning
of the trajectory equation x = x(t);
but which is the meaning of the
wave-function ¯(x; t) appearing in the
Schrödinger equation ?
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The wave function

It is precisely in the interpretation of the
wave-function that there is one of the most
important differences with respect to the
classical world.

According to Max Born

j¯(x; t)j2 is proportional to the
probability density of finding the
particle in the position x at time t.

It is the so called Copenaghen
or statistical interpretation.
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The wave function

1 More precisely, according to this
interpretation, the probability of finding the
particle between a and b at time t is given by

P (a; b; t) =

R b
a dx j¯(x; t)j2

R+1
`1 dx j¯(x; t)j2

2 This, in particular, requires that ¯(x; t) is a
square-integrable function, or, in other
words, that

Z +1

`1
j¯(x; t)j2 dx = A(t)

for some positive real time function A(t).
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The wave function

1 According to QM, a physical state is fully
described by its wave-function ¯;
although the correspondence is not
one-to-one: an axiom of QM states that
wave functions differing only by a complex
multiplicative constant (different from zero)
describe the same physical state.

¯(x; t) and K ´¯(x; t) are equivalent

for any (non null) complex constant K.

2 This aspect has to do with the so-called
normalization of the wave function,
and we will come on this point later on.
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Consequeces from the statistical
interpretation

1 The most obvious consequence coming from
the statistical interpretation is that the
physical state af a particle, (fully) described
by wave function ¯, has an intrinsic,
unavoidable indeterminacy.

2 The particle will be found very likely near A
and never in B; but if we measure the
particle position many times, starting from
the same physical state, we will possibly
get, each time, different results !
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Consequeces

1 Assume now that, after a position
measurement, we have got for the particle
the position C. Can we say where the
particle was just before the measurement ?

2 QM states that, before the measurement,
since the state described by  implies only
that there is a non-null probability, but not a
certainty, to find the particle in C, we cannot
say nothing about the particle position.

3 This looks crazy, but it is like that !
Until a measurement is done, the particle is
potentially where the wave function indicates
a non-null probability.
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Consequeces

1 And what about the position where will be
found the particle if we perform another
position measurement, just after the previous
one that has found the particle in C ?

2 Here QM states that, if we repeat the
measurement immediately after, we will find
again the same result as before, so still in
position C.

3 And this, at least, sounds quite
reasonable !
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Consequeces

1 However this "reasonable conclusion"
means that the measurement has changed
the physical state of the particle and, as a
consequence, also its wave function

¯! ¯0

2 In fact, now, the new wave function ¯0 must
be such to give a probability peaked in C,
with a virtually absence of spread around this
position.

3 It is the so called collapse of the wave
function, another prediction of QM which
was (and still is) not easy to digest.
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The w.f. collapse
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The probability

Because of the
statistical interpretation
of j¯j2,
it may be useful some
reminder concerning the
Probability Theory ...
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Probability

Assume you have a perfect
dice.

Which is the probability of
getting, f.i., a 5 after a roll ?

1 Everyone knows that this probability is
P = 1=6.

2 The reason of this conclusion is that there
are six different possibilities that should
appear with the same frequency, and only
one corresponds to the 5.
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Probability

1 The probability of the event is identified with
the ratio between the number of "positive"
cases and their total number.

2 Clearly, if instead of 5, we bet on any
another number between 1 and 6, the
probability remains 1=6 ...
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Probability

1 But what about the probability that, with
two dice, we obtain 12 as sum of the two ?

2 Since the possibilities are now 6ˆ 6 = 36,
and only in one case we can get 12 (with
both dice giving a 6), the probability is 1=36.

Enrico Iacopini QUANTUM MECHANICS Lecture 2 September 4, 2019 16 / 31



QUANTUM
MECHANICS
Lecture 2

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probability

1 But what about the probability that, with
two dice, we obtain 12 as sum of the two ?

2 Since the possibilities are now 6ˆ 6 = 36,
and only in one case we can get 12 (with
both dice giving a 6), the probability is 1=36.

Enrico Iacopini QUANTUM MECHANICS Lecture 2 September 4, 2019 16 / 31



QUANTUM
MECHANICS
Lecture 2

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probability

And in case we bet on
11, the probability still
remains 1=36 ?

1 No.

2 Because now there are two possibilities out
of 36 to get 11, (6; 5) and (5; 6), therefore
the probability becomes 2=36 = 1=18.
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Probability

Probability of obtaining any sum from 2 to 12:

12 : (6; 6) P = 1=36

11 : (6; 5); (5; 6) P = 2=36

10 : (6; 4); (4; 6); (5; 5) P = 3=36

9 : (6; 3); (3; 6); (5; 4); (4; 5) P = 4=36

8 : (6; 2); (2; 6); (5; 3); (3; 5); (4; 4) P = 5=36

7 : (6; 1); (1; 6); (5; 2); (2; 5); (4; 3); (3; 4) P = 6=36

6 : (5; 1); (1; 5); (4; 2); (2; 4); (3; 3) P = 5=36

5 : (4; 1); (1; 4); (3; 2); (2; 3) P = 4=36

4 : (3; 1); (1; 3); (2; 2) P = 3=36

3 : (2; 1); (1; 2) P = 2=36

2 : (1; 1) P = 1=36
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Probability distribution

The probability
distribution shows
that the most
probable value if 7,
with a probability
equal to P = 1=6.
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Probability distribution

1 Associated to the probability distribution, we
can define the average (mean value) m as

m ”
12
X

s=2

s ´ P (s) ”< s >

2 It is easy to see that, in our case, we obtain
m = 7.

3 But be careful: the average and the most
probable value are a priori independent !
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Probability distribution

Take, f.i., the following probability distribution:

P (1) = 1=2

P (2) = 1=4

P (3) = 1=8

P (4) = 1=8

the most probable value is clearly 1,
but the average value is

m =
X

s=1;4

P (s) ´ s =

=
1

2
´ 1 + 1

4
´ 2 + 1

8
´ 3 + 1

8
´ 4 = 15

8
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Probability distribution

1 Together with the average m ”< s >,
another important quantity, which gives a
measure of the spread of the probability
distribution, is the variance D defined as

D ”
X

s

P (s)

 

s` < m >

!2

2 The square root of the variance is called the
standard deviation ff or the root mean
square (r.m.s.) of the distribution

ff ”
p
D =

v

u

u

u

t

X

s

P (s)

 

s` < m >

!2
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Probability distribution

We have (remember that
X

s

P (s) = 1 ...)

ff2 =
X

s

P (s)

 

s2 ` 2s < m > + < m >2
!

=

=

0

@

X

s

P (s) s2
1

A` 2 < m >< m > + < m >2=

= < s2 > ` < m >2
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Probability distribution

In case of a continuous random variable,
the probability distribution is described by a
probability density function (pdf) ȷ(x) such that

1 ȷ(x) dx is the probability to find the random
variable between x and x+ dx;

2 x varies between some xmin and xmax (that
can also be equal to ˚1, respectively ...)

3 ȷ(x) – 0
Z xmax

xmin
ȷ(x) dx = 1
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Probability distribution

1 In the case of a continuous probability
distribution, the average (mean) is defined as

m ”< x >=

Z xmax

xmin
dx ȷ(x) ´ x

2 whereas, for the standard deviation, we have

ff2 =

Z xmax

xmin
dx

 

x`m
!2

ȷ(x) =

=

 
Z xmax

xmin
dx ȷ(x) ´ x2

!

`m2
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First example: flat distribution

Assume that ȷ(x) is
equal to zero for jxj – a

and that ȷ(x) = 1
2a

when jxj » a

1 Clearly m ”< x >= 0, but what about ff2 ?
2 We have

ff2 =

Z +a

`a
dx ȷ(x)x2 =

Z +a

`a
dx
1

2a
x2 =

=
1

2a

 

2
a3

3

!

=
a2

3
) ff =

a
p
3

Enrico Iacopini QUANTUM MECHANICS Lecture 2 September 4, 2019 26 / 31



QUANTUM
MECHANICS
Lecture 2

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

First example: flat distribution

Assume that ȷ(x) is
equal to zero for jxj – a

and that ȷ(x) = 1
2a

when jxj » a

1 Clearly m ”< x >= 0, but what about ff2 ?
2 We have

ff2 =

Z +a

`a
dx ȷ(x)x2 =

Z +a

`a
dx
1

2a
x2 =

=
1

2a

 

2
a3

3

!

=
a2

3
) ff =

a
p
3

Enrico Iacopini QUANTUM MECHANICS Lecture 2 September 4, 2019 26 / 31



QUANTUM
MECHANICS
Lecture 2

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

First example: flat distribution

Assume that ȷ(x) is
equal to zero for jxj – a

and that ȷ(x) = 1
2a

when jxj » a

1 Clearly m ”< x >= 0, but what about ff2 ?
2 We have

ff2 =

Z +a

`a
dx ȷ(x)x2 =

Z +a

`a
dx
1

2a
x2 =

=
1

2a

 

2
a3

3

!

=
a2

3
) ff =

a
p
3

Enrico Iacopini QUANTUM MECHANICS Lecture 2 September 4, 2019 26 / 31



QUANTUM
MECHANICS
Lecture 2

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Triangular prob. density function

Assume now a triangular shape for the p.d.f.,
such as

ȷ(x) =
1

a2

 

a` jxj
!

for jxj » a

ȷ(x) = 0 otherwise

1 The average is still m =< x >= 0 but now

ff2 =

Z a

`a
ȷ(x) ´ x2 dx = 2

Z a

0
ȷ(x) ´ x2 dx =

=
2

a2

Z a

0

 

a` x
!

x2 dx =
2

a2

 

a
a3

3
` a4

4

!

=
a2

6
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Triangular prob. density function

Assume now a triangular shape for the p.d.f.,
such as

ȷ(x) =
1

a2

 

a` jxj
!

for jxj » a

ȷ(x) = 0 otherwise

1 The average is still m =< x >= 0 but now

ff2 =

Z a

`a
ȷ(x) ´ x2 dx = 2

Z a

0
ȷ(x) ´ x2 dx =

=
2

a2

Z a

0
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So much for the Probability Theory.

Let us come back to our wave functions ...
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The wave function normalization

1 We have said that the solutions of the
Schrödinger equation ¯(x; t) have to be
square integrable, which means that

8t :
Z +1

`1
j¯(x; t)j2 dx = A(t) > 0

where A(t), a priori, can be time dependent
(we will see that A is indeed a constant ...).

2 We have also said that, according to QM,
two wave functions ¯a and ¯b that are
proportional (¯a = k¯b ), they represent
the same physical state.
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The wave function normalization

1 This allow us to represent any physical state
by choosing the(˜) particular wave-function
which is "normalized" (at least at some time
t = t̂):

~̄ (x; t) =
1

q

A(t̂)
¯(x; t)

such that
Z +1

`1
j ~̄ (x; t̂)j2 dx = 1

2 (*) The normalized wave function
is indeed not unique, but it is determined
up to a constant complex phase factor ei¸.
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Exercise N.1

Assume a wave function

¯(x; t) = Ae`— jxj ei k t

where A, – and ! are positive real constants.

i) Normalize  ;
ii) Evaluate < x >, < x2 > and ff;
iii) Calculate the probability to find the particle
outside the interval < x > ˚2ff.
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